{"title":"山竹果皮和肉桂罗望子叶提取物的协同混合物在体外增强肌源分化和线粒体生物发生,并增强小鼠的肌肉生长和力量。","authors":"Swaraj Sinha, Krishnaraju Venkata Alluri, Venkateswarlu Somepalli, Trimurtulu Golakoti, Krishanu Sengupta","doi":"10.29219/fnr.v67.9750","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A proprietary combination of <i>Garcinia mangostana</i> fruit rind and <i>Cinnamomum tamala</i> leaf extracts (LI80020F4, CinDura<sup>®</sup>) improved the physical performance and muscle strength of resistance-trained adult males.</p><p><strong>Objective: </strong>This study assessed the underlying mechanisms of the ergogenic potential of LI80020F4 in <i>in vitro</i> and <i>in vivo</i> models.</p><p><strong>Methods: </strong>The individual extracts and their combination (LI80020F4) were assessed for nitrite production in EAhy926 human endothelial cells. Subsequent experiments evaluated the effect of LI80020F4 in myotube formation in C2C12 mouse myoblasts, expression of mammalian target of rapamycin (mTOR) signaling proteins, myogenic factors, and mitochondrial functions in L6 rat myoblasts.Moreover, adult male ICR mice were randomly assigned (<i>n</i> = 15) into vehicle control (G1), exercise alone (G2), oxymetholone-16 mg/kg body weight (bw) (G3), and 75 (G4)-, 150 (G5)-, or 300 (G6) mg/kg bw of LI80020F4, orally gavaged for 28 days. G1 and G2 mice received 0.5% carboxymethylcellulose sodium. Following completion, muscle strength and physical performance were assessed on forelimb grip strength and forced swimming test (FST), respectively. Gastrocnemius (GA), tibialis anterior (TA) muscle weights, muscle fiber cross-sectional area (CSA), levels of muscle, and serum protein markers were also determined.</p><p><strong>Results: </strong>LI80020F4 increased nitrite production in EAhy926 cells in a dose-dependent manner. LI80020F4 induced C2C12 myotube formation, increased mitochondrial biogenesis, upregulated the expressions of activated mTOR and other mitochondria and myogenic proteins, and mitigated H<sub>2</sub>O<sub>2</sub>-induced mitochondrial membrane depolarization in the myoblast cells. In the animal study, 75, 150, and 300 mg/kg bw LI80020F4 doses significantly (<i>P</i> < 0.05) increased the animals' forelimb grip strength. Mid- and high-dose groups showed increased swimming time, increased muscle weight, CSA, muscle growth-related, and mitochondrial protein expressions in the GA muscles.</p><p><strong>Conclusion: </strong>LI80020F4 increases nitric oxide production in the endothelial cells, mitochondrial biogenesis and function, upregulates skeletal muscle growth-related protein expressions and reduces oxidative stress; together, it explains the basis of the ergogenic potential of LI80020F4.</p>","PeriodicalId":12119,"journal":{"name":"Food & Nutrition Research","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619412/pdf/","citationCount":"0","resultStr":"{\"title\":\"A synergistic blend of <i>Garcinia mangostana</i> fruit rind and <i>Cinnamomum tamala</i> leaf extracts enhances myogenic differentiation and mitochondrial biogenesis <i>in vitro</i> and muscle growth and strength in mice.\",\"authors\":\"Swaraj Sinha, Krishnaraju Venkata Alluri, Venkateswarlu Somepalli, Trimurtulu Golakoti, Krishanu Sengupta\",\"doi\":\"10.29219/fnr.v67.9750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>A proprietary combination of <i>Garcinia mangostana</i> fruit rind and <i>Cinnamomum tamala</i> leaf extracts (LI80020F4, CinDura<sup>®</sup>) improved the physical performance and muscle strength of resistance-trained adult males.</p><p><strong>Objective: </strong>This study assessed the underlying mechanisms of the ergogenic potential of LI80020F4 in <i>in vitro</i> and <i>in vivo</i> models.</p><p><strong>Methods: </strong>The individual extracts and their combination (LI80020F4) were assessed for nitrite production in EAhy926 human endothelial cells. Subsequent experiments evaluated the effect of LI80020F4 in myotube formation in C2C12 mouse myoblasts, expression of mammalian target of rapamycin (mTOR) signaling proteins, myogenic factors, and mitochondrial functions in L6 rat myoblasts.Moreover, adult male ICR mice were randomly assigned (<i>n</i> = 15) into vehicle control (G1), exercise alone (G2), oxymetholone-16 mg/kg body weight (bw) (G3), and 75 (G4)-, 150 (G5)-, or 300 (G6) mg/kg bw of LI80020F4, orally gavaged for 28 days. G1 and G2 mice received 0.5% carboxymethylcellulose sodium. Following completion, muscle strength and physical performance were assessed on forelimb grip strength and forced swimming test (FST), respectively. Gastrocnemius (GA), tibialis anterior (TA) muscle weights, muscle fiber cross-sectional area (CSA), levels of muscle, and serum protein markers were also determined.</p><p><strong>Results: </strong>LI80020F4 increased nitrite production in EAhy926 cells in a dose-dependent manner. LI80020F4 induced C2C12 myotube formation, increased mitochondrial biogenesis, upregulated the expressions of activated mTOR and other mitochondria and myogenic proteins, and mitigated H<sub>2</sub>O<sub>2</sub>-induced mitochondrial membrane depolarization in the myoblast cells. In the animal study, 75, 150, and 300 mg/kg bw LI80020F4 doses significantly (<i>P</i> < 0.05) increased the animals' forelimb grip strength. Mid- and high-dose groups showed increased swimming time, increased muscle weight, CSA, muscle growth-related, and mitochondrial protein expressions in the GA muscles.</p><p><strong>Conclusion: </strong>LI80020F4 increases nitric oxide production in the endothelial cells, mitochondrial biogenesis and function, upregulates skeletal muscle growth-related protein expressions and reduces oxidative stress; together, it explains the basis of the ergogenic potential of LI80020F4.</p>\",\"PeriodicalId\":12119,\"journal\":{\"name\":\"Food & Nutrition Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619412/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food & Nutrition Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.29219/fnr.v67.9750\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Nutrition Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.29219/fnr.v67.9750","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
A synergistic blend of Garcinia mangostana fruit rind and Cinnamomum tamala leaf extracts enhances myogenic differentiation and mitochondrial biogenesis in vitro and muscle growth and strength in mice.
Background: A proprietary combination of Garcinia mangostana fruit rind and Cinnamomum tamala leaf extracts (LI80020F4, CinDura®) improved the physical performance and muscle strength of resistance-trained adult males.
Objective: This study assessed the underlying mechanisms of the ergogenic potential of LI80020F4 in in vitro and in vivo models.
Methods: The individual extracts and their combination (LI80020F4) were assessed for nitrite production in EAhy926 human endothelial cells. Subsequent experiments evaluated the effect of LI80020F4 in myotube formation in C2C12 mouse myoblasts, expression of mammalian target of rapamycin (mTOR) signaling proteins, myogenic factors, and mitochondrial functions in L6 rat myoblasts.Moreover, adult male ICR mice were randomly assigned (n = 15) into vehicle control (G1), exercise alone (G2), oxymetholone-16 mg/kg body weight (bw) (G3), and 75 (G4)-, 150 (G5)-, or 300 (G6) mg/kg bw of LI80020F4, orally gavaged for 28 days. G1 and G2 mice received 0.5% carboxymethylcellulose sodium. Following completion, muscle strength and physical performance were assessed on forelimb grip strength and forced swimming test (FST), respectively. Gastrocnemius (GA), tibialis anterior (TA) muscle weights, muscle fiber cross-sectional area (CSA), levels of muscle, and serum protein markers were also determined.
Results: LI80020F4 increased nitrite production in EAhy926 cells in a dose-dependent manner. LI80020F4 induced C2C12 myotube formation, increased mitochondrial biogenesis, upregulated the expressions of activated mTOR and other mitochondria and myogenic proteins, and mitigated H2O2-induced mitochondrial membrane depolarization in the myoblast cells. In the animal study, 75, 150, and 300 mg/kg bw LI80020F4 doses significantly (P < 0.05) increased the animals' forelimb grip strength. Mid- and high-dose groups showed increased swimming time, increased muscle weight, CSA, muscle growth-related, and mitochondrial protein expressions in the GA muscles.
Conclusion: LI80020F4 increases nitric oxide production in the endothelial cells, mitochondrial biogenesis and function, upregulates skeletal muscle growth-related protein expressions and reduces oxidative stress; together, it explains the basis of the ergogenic potential of LI80020F4.
期刊介绍:
Food & Nutrition Research is a peer-reviewed journal that presents the latest scientific research in various fields focusing on human nutrition. The journal publishes both quantitative and qualitative research papers.
Through an Open Access publishing model, Food & Nutrition Research opens an important forum for researchers from academic and private arenas to exchange the latest results from research on human nutrition in a broad sense, both original papers and reviews, including:
* Associations and effects of foods and nutrients on health
* Dietary patterns and health
* Molecular nutrition
* Health claims on foods
* Nutrition and cognitive functions
* Nutritional effects of food composition and processing
* Nutrition in developing countries
* Animal and in vitro models with clear relevance for human nutrition
* Nutrition and the Environment
* Food and Nutrition Education
* Nutrition and Economics
Research papers on food chemistry (focus on chemical composition and analysis of foods) are generally not considered eligible, unless the results have a clear impact on human nutrition.
The journal focuses on the different aspects of nutrition for people involved in nutrition research such as Dentists, Dieticians, Medical doctors, Nutritionists, Teachers, Journalists and Manufacturers in the food and pharmaceutical industries.