对辐射诱导的细胞水平的适应性反应及其在癌症治疗中的意义的见解。

IF 1.7 4区 生物学 Q4 CELL BIOLOGY
Cytogenetic and Genome Research Pub Date : 2023-01-01 Epub Date: 2023-10-31 DOI:10.1159/000534500
Aishwarya Thathamangalam Ananthanarayanan, Venkateswarlu Raavi, Satish Srinivas Kondaveeti, Ilangovan Ramachandran, Venkatachalam Perumal
{"title":"对辐射诱导的细胞水平的适应性反应及其在癌症治疗中的意义的见解。","authors":"Aishwarya Thathamangalam Ananthanarayanan, Venkateswarlu Raavi, Satish Srinivas Kondaveeti, Ilangovan Ramachandran, Venkatachalam Perumal","doi":"10.1159/000534500","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Development of resistance upon exposure to small doses of ionizing radiation followed by higher doses is known as radiation-induced adaptive response (RIAR). Traditionally, the induction of the RIAR phenomenon at the cellular level has been examined in cell lines, animal models, and epidemiological studies where people live in high natural background radiation.</p><p><strong>Summary: </strong>The primary intention of the earlier studies was to corroborate the existence of RIAR and the mechanism involved in mediating the response surveyed by exposure to a low dose of radiation (&lt;500 mGy) as priming dose toward the radiation protection point of view. However, the investigation has shifted the focus to understand the relevance of this phenomenon at clinically relevant set-ups (high doses in the order of Gy) and can be exploited during radiotherapy as RIAR is considered a mechanism for the development of radioresistance. Although the knowledge of molecular mechanisms at the cellular level has evolved significantly in multi-fractionated radiotherapy regimes, its relevance in developing radioresistance at low doses remains elusive. The authors recapitulate the existing knowledge on RIAR at cellular levels, specifically after low-dose exposure as an adaptive dose, and discussed its potential implications in clinical radiotherapy outcomes.</p><p><strong>Key messages: </strong>Recent studies have contributed to understand the signaling molecules, pathways, and inhibitors to mitigate RIAR-mediated radiation resistance and persistent radio-tolerance at the cellular level. Monitoring the disease progression in tumor samples or liquid biopsies before, during, and after therapy with suitable biomarkers has been proposed as a strategy to translate the phenomena into clinical scenario.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights on the Radiation-Induced Adaptive Response at the Cellular Level and Its Implications in Cancer Therapy.\",\"authors\":\"Aishwarya Thathamangalam Ananthanarayanan, Venkateswarlu Raavi, Satish Srinivas Kondaveeti, Ilangovan Ramachandran, Venkatachalam Perumal\",\"doi\":\"10.1159/000534500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Development of resistance upon exposure to small doses of ionizing radiation followed by higher doses is known as radiation-induced adaptive response (RIAR). Traditionally, the induction of the RIAR phenomenon at the cellular level has been examined in cell lines, animal models, and epidemiological studies where people live in high natural background radiation.</p><p><strong>Summary: </strong>The primary intention of the earlier studies was to corroborate the existence of RIAR and the mechanism involved in mediating the response surveyed by exposure to a low dose of radiation (&lt;500 mGy) as priming dose toward the radiation protection point of view. However, the investigation has shifted the focus to understand the relevance of this phenomenon at clinically relevant set-ups (high doses in the order of Gy) and can be exploited during radiotherapy as RIAR is considered a mechanism for the development of radioresistance. Although the knowledge of molecular mechanisms at the cellular level has evolved significantly in multi-fractionated radiotherapy regimes, its relevance in developing radioresistance at low doses remains elusive. The authors recapitulate the existing knowledge on RIAR at cellular levels, specifically after low-dose exposure as an adaptive dose, and discussed its potential implications in clinical radiotherapy outcomes.</p><p><strong>Key messages: </strong>Recent studies have contributed to understand the signaling molecules, pathways, and inhibitors to mitigate RIAR-mediated radiation resistance and persistent radio-tolerance at the cellular level. Monitoring the disease progression in tumor samples or liquid biopsies before, during, and after therapy with suitable biomarkers has been proposed as a strategy to translate the phenomena into clinical scenario.</p>\",\"PeriodicalId\":11206,\"journal\":{\"name\":\"Cytogenetic and Genome Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytogenetic and Genome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000534500\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytogenetic and Genome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000534500","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:暴露于小剂量电离辐射后产生耐药性被称为辐射诱导适应性反应(RIAR)。传统上,RIAR现象在细胞水平上的诱导已经在细胞系、动物模型和流行病学研究中进行了检测,在这些研究中,人们生活在高自然背景辐射中。摘要:早期研究的主要目的是证实RIAR的存在以及通过暴露于低剂量辐射来介导反应的机制(关键信息:最近的研究有助于了解信号分子、途径和抑制剂,以在细胞水平上减轻RIAR介导的辐射抵抗和持续的无线电耐受。在治疗之前、期间和之后,用合适的生物标志物监测肿瘤样本或液体活组织检查中的疾病进展,已被提议作为一种策略,将这些现象转化为o临床场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insights on the Radiation-Induced Adaptive Response at the Cellular Level and Its Implications in Cancer Therapy.

Background: Development of resistance upon exposure to small doses of ionizing radiation followed by higher doses is known as radiation-induced adaptive response (RIAR). Traditionally, the induction of the RIAR phenomenon at the cellular level has been examined in cell lines, animal models, and epidemiological studies where people live in high natural background radiation.

Summary: The primary intention of the earlier studies was to corroborate the existence of RIAR and the mechanism involved in mediating the response surveyed by exposure to a low dose of radiation (<500 mGy) as priming dose toward the radiation protection point of view. However, the investigation has shifted the focus to understand the relevance of this phenomenon at clinically relevant set-ups (high doses in the order of Gy) and can be exploited during radiotherapy as RIAR is considered a mechanism for the development of radioresistance. Although the knowledge of molecular mechanisms at the cellular level has evolved significantly in multi-fractionated radiotherapy regimes, its relevance in developing radioresistance at low doses remains elusive. The authors recapitulate the existing knowledge on RIAR at cellular levels, specifically after low-dose exposure as an adaptive dose, and discussed its potential implications in clinical radiotherapy outcomes.

Key messages: Recent studies have contributed to understand the signaling molecules, pathways, and inhibitors to mitigate RIAR-mediated radiation resistance and persistent radio-tolerance at the cellular level. Monitoring the disease progression in tumor samples or liquid biopsies before, during, and after therapy with suitable biomarkers has been proposed as a strategy to translate the phenomena into clinical scenario.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytogenetic and Genome Research
Cytogenetic and Genome Research 生物-细胞生物学
CiteScore
3.10
自引率
5.90%
发文量
25
审稿时长
1 months
期刊介绍: During the last decades, ''Cytogenetic and Genome Research'' has been the leading forum for original reports and reviews in human and animal cytogenetics, including molecular, clinical and comparative cytogenetics. In recent years, most of its papers have centered on genome research, including gene cloning and sequencing, gene mapping, gene regulation and expression, cancer genetics, comparative genetics, gene linkage and related areas. The journal also publishes key papers on chromosome aberrations in somatic, meiotic and malignant cells. Its scope has expanded to include studies on invertebrate and plant cytogenetics and genomics. Also featured are the vast majority of the reports of the International Workshops on Human Chromosome Mapping, the reports of international human and animal chromosome nomenclature committees, and proceedings of the American and European cytogenetic conferences and other events. In addition to regular issues, the journal has been publishing since 2002 a series of topical issues on a broad variety of themes from cytogenetic and genome research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信