无活性电极无线神经刺激机制的研究。

IF 1.8 3区 生物学 Q3 BIOLOGY
Luke A. Smith MSc, Jaedon D. Bem MSc, Xiaojing Lv PhD, Antonio Lauto PhD, Ashour Sliow PhD, Zhiyuan Ma MD, David A. Mahns PhD, Carolyn Berryman PhD, Mark R. Hutchinson PhD, Christophe Fumeaux PhD, Giuseppe C. Tettamanzi PhD
{"title":"无活性电极无线神经刺激机制的研究。","authors":"Luke A. Smith MSc,&nbsp;Jaedon D. Bem MSc,&nbsp;Xiaojing Lv PhD,&nbsp;Antonio Lauto PhD,&nbsp;Ashour Sliow PhD,&nbsp;Zhiyuan Ma MD,&nbsp;David A. Mahns PhD,&nbsp;Carolyn Berryman PhD,&nbsp;Mark R. Hutchinson PhD,&nbsp;Christophe Fumeaux PhD,&nbsp;Giuseppe C. Tettamanzi PhD","doi":"10.1002/bem.22486","DOIUrl":null,"url":null,"abstract":"<p>Electric-field stimulation of neuronal activity can be used to improve the speed of regeneration for severed and damaged nerves. Most techniques, however, require invasive electronic circuitry which can be uncomfortable for the patient and can damage surrounding tissue. A recently suggested technique uses a graft-antenna—a metal ring wrapped around the damaged nerve—powered by an external magnetic stimulation device. This technique requires no electrodes and internal circuitry with leads across the skin boundary or internal power, since all power is provided wirelessly. This paper examines the microscopic basic mechanisms that allow the magnetic stimulation device to cause neural activation via the graft-antenna. A computational model of the system was created and used to find that under magnetic stimulation, diverging electric fields appear at the metal ring's edges. If the magnetic stimulation is sufficient, the gradients of these fields can trigger neural activation in the nerve. In-vivo measurements were also performed on rat sciatic nerves to support the modeling finding that direct contact between the antenna and the nerve ensures neural activation given sufficient magnetic stimulation. Simulations also showed that the presence of a thin gap between the graft-antenna and the nerve does not preclude neural activation but does reduce its efficacy.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"44 7-8","pages":"181-191"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22486","citationCount":"0","resultStr":"{\"title\":\"Investigation of the mechanisms for wireless nerve stimulation without active electrodes\",\"authors\":\"Luke A. Smith MSc,&nbsp;Jaedon D. Bem MSc,&nbsp;Xiaojing Lv PhD,&nbsp;Antonio Lauto PhD,&nbsp;Ashour Sliow PhD,&nbsp;Zhiyuan Ma MD,&nbsp;David A. Mahns PhD,&nbsp;Carolyn Berryman PhD,&nbsp;Mark R. Hutchinson PhD,&nbsp;Christophe Fumeaux PhD,&nbsp;Giuseppe C. Tettamanzi PhD\",\"doi\":\"10.1002/bem.22486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electric-field stimulation of neuronal activity can be used to improve the speed of regeneration for severed and damaged nerves. Most techniques, however, require invasive electronic circuitry which can be uncomfortable for the patient and can damage surrounding tissue. A recently suggested technique uses a graft-antenna—a metal ring wrapped around the damaged nerve—powered by an external magnetic stimulation device. This technique requires no electrodes and internal circuitry with leads across the skin boundary or internal power, since all power is provided wirelessly. This paper examines the microscopic basic mechanisms that allow the magnetic stimulation device to cause neural activation via the graft-antenna. A computational model of the system was created and used to find that under magnetic stimulation, diverging electric fields appear at the metal ring's edges. If the magnetic stimulation is sufficient, the gradients of these fields can trigger neural activation in the nerve. In-vivo measurements were also performed on rat sciatic nerves to support the modeling finding that direct contact between the antenna and the nerve ensures neural activation given sufficient magnetic stimulation. Simulations also showed that the presence of a thin gap between the graft-antenna and the nerve does not preclude neural activation but does reduce its efficacy.</p>\",\"PeriodicalId\":8956,\"journal\":{\"name\":\"Bioelectromagnetics\",\"volume\":\"44 7-8\",\"pages\":\"181-191\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22486\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectromagnetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bem.22486\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectromagnetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bem.22486","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

神经元活动的电场刺激可用于提高切断和受损神经的再生速度。然而,大多数技术都需要侵入性电子电路,这可能会让患者感到不舒服,并可能损伤周围组织。最近提出的一种技术是使用一种由外部磁刺激装置驱动的、缠绕在受损神经上的金属环。该技术不需要电极和具有穿过皮肤边界的引线的内部电路或内部电源,因为所有电源都是无线提供的。本文研究了允许磁刺激装置通过移植物天线引起神经激活的微观基本机制。建立了该系统的计算模型,并使用该模型发现,在磁刺激下,金属环的边缘会出现发散电场。如果磁刺激足够,这些场的梯度可以触发神经中的神经激活。还对大鼠坐骨神经进行了体内测量,以支持建模发现,即天线和神经之间的直接接触确保了在足够的磁刺激下神经激活。模拟还表明,移植物天线和神经之间存在一个薄间隙并不能阻止神经激活,但会降低其功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigation of the mechanisms for wireless nerve stimulation without active electrodes

Investigation of the mechanisms for wireless nerve stimulation without active electrodes

Electric-field stimulation of neuronal activity can be used to improve the speed of regeneration for severed and damaged nerves. Most techniques, however, require invasive electronic circuitry which can be uncomfortable for the patient and can damage surrounding tissue. A recently suggested technique uses a graft-antenna—a metal ring wrapped around the damaged nerve—powered by an external magnetic stimulation device. This technique requires no electrodes and internal circuitry with leads across the skin boundary or internal power, since all power is provided wirelessly. This paper examines the microscopic basic mechanisms that allow the magnetic stimulation device to cause neural activation via the graft-antenna. A computational model of the system was created and used to find that under magnetic stimulation, diverging electric fields appear at the metal ring's edges. If the magnetic stimulation is sufficient, the gradients of these fields can trigger neural activation in the nerve. In-vivo measurements were also performed on rat sciatic nerves to support the modeling finding that direct contact between the antenna and the nerve ensures neural activation given sufficient magnetic stimulation. Simulations also showed that the presence of a thin gap between the graft-antenna and the nerve does not preclude neural activation but does reduce its efficacy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioelectromagnetics
Bioelectromagnetics 生物-生物物理
CiteScore
4.60
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Bioelectromagnetics is published by Wiley-Liss, Inc., for the Bioelectromagnetics Society and is the official journal of the Bioelectromagnetics Society and the European Bioelectromagnetics Association. It is a peer-reviewed, internationally circulated scientific journal that specializes in reporting original data on biological effects and applications of electromagnetic fields that range in frequency from zero hertz (static fields) to the terahertz undulations and visible light. Both experimental and clinical data are of interest to the journal''s readers as are theoretical papers or reviews that offer novel insights into or criticism of contemporary concepts and theories of field-body interactions. The Bioelectromagnetics Society, which sponsors the journal, also welcomes experimental or clinical papers on the domains of sonic and ultrasonic radiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信