Amjad R Khan, Rabia Javed, Tariq Sadad, Saeed Ali Bahaj, Gabriel Avelino Sampedro, Mideth Abisado
{"title":"利用可解释的深度学习和多类支持向量机从虹膜细胞图像分析中进行早期色素斑点分割和分类。","authors":"Amjad R Khan, Rabia Javed, Tariq Sadad, Saeed Ali Bahaj, Gabriel Avelino Sampedro, Mideth Abisado","doi":"10.1139/bcb-2023-0183","DOIUrl":null,"url":null,"abstract":"<p><p>Globally, retinal disorders impact thousands of individuals. Early diagnosis and treatment of these anomalies might halt their development and prevent many people from developing preventable blindness. Iris spot segmentation is critical due to acquiring iris cellular images that suffer from the off-angle iris, noise, and specular reflection. Most currently used iris segmentation techniques are based on edge data and noncellular images. The size of the pigment patches on the surface of the iris increases with eye syndrome. In addition, iris images taken in uncooperative settings frequently have negative noise, making it difficult to segment them precisely. The traditional diagnosis processes are costly and time consuming since they require highly qualified personnel and have strict environments. This paper presents an explainable deep learning model integrated with a multiclass support vector machine to analyze iris cellular images for early pigment spot segmentation and classification. Three benchmark datasets MILE, UPOL, and Eyes SUB were used in the experiments to test the proposed methodology. The experimental results are compared on standard metrics, demonstrating that the proposed model outperformed the methods reported in the literature regarding classification errors. Additionally, it is observed that the proposed parameters are highly effective in locating the micro pigment spots on the iris surfaces.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early pigment spot segmentation and classification from iris cellular image analysis with explainable deep learning and multiclass support vector machine.\",\"authors\":\"Amjad R Khan, Rabia Javed, Tariq Sadad, Saeed Ali Bahaj, Gabriel Avelino Sampedro, Mideth Abisado\",\"doi\":\"10.1139/bcb-2023-0183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Globally, retinal disorders impact thousands of individuals. Early diagnosis and treatment of these anomalies might halt their development and prevent many people from developing preventable blindness. Iris spot segmentation is critical due to acquiring iris cellular images that suffer from the off-angle iris, noise, and specular reflection. Most currently used iris segmentation techniques are based on edge data and noncellular images. The size of the pigment patches on the surface of the iris increases with eye syndrome. In addition, iris images taken in uncooperative settings frequently have negative noise, making it difficult to segment them precisely. The traditional diagnosis processes are costly and time consuming since they require highly qualified personnel and have strict environments. This paper presents an explainable deep learning model integrated with a multiclass support vector machine to analyze iris cellular images for early pigment spot segmentation and classification. Three benchmark datasets MILE, UPOL, and Eyes SUB were used in the experiments to test the proposed methodology. The experimental results are compared on standard metrics, demonstrating that the proposed model outperformed the methods reported in the literature regarding classification errors. Additionally, it is observed that the proposed parameters are highly effective in locating the micro pigment spots on the iris surfaces.</p>\",\"PeriodicalId\":8775,\"journal\":{\"name\":\"Biochemistry and Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/bcb-2023-0183\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/bcb-2023-0183","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Early pigment spot segmentation and classification from iris cellular image analysis with explainable deep learning and multiclass support vector machine.
Globally, retinal disorders impact thousands of individuals. Early diagnosis and treatment of these anomalies might halt their development and prevent many people from developing preventable blindness. Iris spot segmentation is critical due to acquiring iris cellular images that suffer from the off-angle iris, noise, and specular reflection. Most currently used iris segmentation techniques are based on edge data and noncellular images. The size of the pigment patches on the surface of the iris increases with eye syndrome. In addition, iris images taken in uncooperative settings frequently have negative noise, making it difficult to segment them precisely. The traditional diagnosis processes are costly and time consuming since they require highly qualified personnel and have strict environments. This paper presents an explainable deep learning model integrated with a multiclass support vector machine to analyze iris cellular images for early pigment spot segmentation and classification. Three benchmark datasets MILE, UPOL, and Eyes SUB were used in the experiments to test the proposed methodology. The experimental results are compared on standard metrics, demonstrating that the proposed model outperformed the methods reported in the literature regarding classification errors. Additionally, it is observed that the proposed parameters are highly effective in locating the micro pigment spots on the iris surfaces.
期刊介绍:
Published since 1929, Biochemistry and Cell Biology explores every aspect of general biochemistry and includes up-to-date coverage of experimental research into cellular and molecular biology in eukaryotes, as well as review articles on topics of current interest and notes contributed by recognized international experts. Special issues each year are dedicated to expanding new areas of research in biochemistry and cell biology.