Zane G. Long, Jonathan V. Le, Benjamin B. Katz, Belen G. Lopez, Emily D. Tenenbaum, Bonnie Semmling, Ryan J. Schmidt, Felix Grün, Carter T. Butts, Rachel W. Martin
{"title":"使用MALDI成像对来自压制干燥的植物组织的小分子进行空间分辨检测。","authors":"Zane G. Long, Jonathan V. Le, Benjamin B. Katz, Belen G. Lopez, Emily D. Tenenbaum, Bonnie Semmling, Ryan J. Schmidt, Felix Grün, Carter T. Butts, Rachel W. Martin","doi":"10.1002/aps3.11539","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Premise</h3>\n \n <p>Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a chemical imaging method that can visualize spatial distributions of particular molecules. Plant tissue imaging has so far mostly used cryosectioning, which can be impractical for the preparation of large-area imaging samples, such as full flower petals. Imaging unsectioned plant tissue presents its own difficulties in extracting metabolites to the surface due to the waxy cuticle.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We address this by using established delipidation techniques combined with a solvent vapor extraction prior to applying the matrix with many low-concentration sprays.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Using this procedure, we imaged tissue from three different plant species (two flowers and one carnivorous plant leaf). Material factorization analysis of the resulting data reveals a wide range of plant-specific small molecules with varying degrees of localization to specific portions of the tissue samples, while facilitating detection and removal of signal from background sources.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>This work demonstrates applicability of MALDI-MSI to press-dried plant samples without freezing or cryosectioning, setting the stage for spatially resolved molecule identification. Increased mass resolution and inclusion of tandem mass spectrometry are necessary next steps to allow more specific and reliable compound identification.</p>\n </section>\n </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"11 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatially resolved detection of small molecules from press-dried plant tissue using MALDI imaging\",\"authors\":\"Zane G. Long, Jonathan V. Le, Benjamin B. Katz, Belen G. Lopez, Emily D. Tenenbaum, Bonnie Semmling, Ryan J. Schmidt, Felix Grün, Carter T. Butts, Rachel W. Martin\",\"doi\":\"10.1002/aps3.11539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Premise</h3>\\n \\n <p>Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a chemical imaging method that can visualize spatial distributions of particular molecules. Plant tissue imaging has so far mostly used cryosectioning, which can be impractical for the preparation of large-area imaging samples, such as full flower petals. Imaging unsectioned plant tissue presents its own difficulties in extracting metabolites to the surface due to the waxy cuticle.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We address this by using established delipidation techniques combined with a solvent vapor extraction prior to applying the matrix with many low-concentration sprays.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Using this procedure, we imaged tissue from three different plant species (two flowers and one carnivorous plant leaf). Material factorization analysis of the resulting data reveals a wide range of plant-specific small molecules with varying degrees of localization to specific portions of the tissue samples, while facilitating detection and removal of signal from background sources.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>This work demonstrates applicability of MALDI-MSI to press-dried plant samples without freezing or cryosectioning, setting the stage for spatially resolved molecule identification. Increased mass resolution and inclusion of tandem mass spectrometry are necessary next steps to allow more specific and reliable compound identification.</p>\\n </section>\\n </div>\",\"PeriodicalId\":8022,\"journal\":{\"name\":\"Applications in Plant Sciences\",\"volume\":\"11 5\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications in Plant Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11539\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11539","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Spatially resolved detection of small molecules from press-dried plant tissue using MALDI imaging
Premise
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a chemical imaging method that can visualize spatial distributions of particular molecules. Plant tissue imaging has so far mostly used cryosectioning, which can be impractical for the preparation of large-area imaging samples, such as full flower petals. Imaging unsectioned plant tissue presents its own difficulties in extracting metabolites to the surface due to the waxy cuticle.
Methods
We address this by using established delipidation techniques combined with a solvent vapor extraction prior to applying the matrix with many low-concentration sprays.
Results
Using this procedure, we imaged tissue from three different plant species (two flowers and one carnivorous plant leaf). Material factorization analysis of the resulting data reveals a wide range of plant-specific small molecules with varying degrees of localization to specific portions of the tissue samples, while facilitating detection and removal of signal from background sources.
Conclusions
This work demonstrates applicability of MALDI-MSI to press-dried plant samples without freezing or cryosectioning, setting the stage for spatially resolved molecule identification. Increased mass resolution and inclusion of tandem mass spectrometry are necessary next steps to allow more specific and reliable compound identification.
期刊介绍:
Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal promoting the rapid dissemination of newly developed, innovative tools and protocols in all areas of the plant sciences, including genetics, structure, function, development, evolution, systematics, and ecology. Given the rapid progress today in technology and its application in the plant sciences, the goal of APPS is to foster communication within the plant science community to advance scientific research. APPS is a publication of the Botanical Society of America, originating in 2009 as the American Journal of Botany''s online-only section, AJB Primer Notes & Protocols in the Plant Sciences.
APPS publishes the following types of articles: (1) Protocol Notes describe new methods and technological advancements; (2) Genomic Resources Articles characterize the development and demonstrate the usefulness of newly developed genomic resources, including transcriptomes; (3) Software Notes detail new software applications; (4) Application Articles illustrate the application of a new protocol, method, or software application within the context of a larger study; (5) Review Articles evaluate available techniques, methods, or protocols; (6) Primer Notes report novel genetic markers with evidence of wide applicability.