1,4-二恶烷和乙烷的同时生物降解动力学。

IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ermias Gebrekrstos Tesfamariam, Yi-Hao Luo, Chen Zhou, Ming Ye, Rosa Krajmalnik-Brown, Bruce E. Rittmann, Youneng Tang
{"title":"1,4-二恶烷和乙烷的同时生物降解动力学。","authors":"Ermias Gebrekrstos Tesfamariam,&nbsp;Yi-Hao Luo,&nbsp;Chen Zhou,&nbsp;Ming Ye,&nbsp;Rosa Krajmalnik-Brown,&nbsp;Bruce E. Rittmann,&nbsp;Youneng Tang","doi":"10.1007/s10532-023-10058-x","DOIUrl":null,"url":null,"abstract":"<div><p>Biodegradation of 1,4-Dioxane at environmentally relevant concentrations usually requires the addition of a primary electron-donor substrate to sustain biomass growth. Ethane is a promising substrate, since it is available as a degradation product of 1,4-Dioxane’s common co-contaminants. This study reports kinetic parameters for ethane biodegradation and co-oxidations of ethane and 1,4-Dioxane. Based on experiments combined with mathematical modeling, we found that ethane promoted 1,4-Dioxane biodegradation when the initial mass ratio of ethane:1,4-Dioxane was &lt; 9:1 mg COD/mg COD, while it inhibited 1,4-Dioxane degradation when the ratio was &gt; 9:1. A model-independent estimator was used for kinetic-parameter estimation, and all parameter values for 1,4-Dioxane were consistent with literature-reported ranges. Estimated parameters support competitive inhibition between ethane as the primary substrate and 1,4-Dioxane as the secondary substrate. The results also support that bacteria that co-oxidize ethane and 1,4-Dioxane had a competitive advantage over bacteria that can use only one of the two substrates. The minimum concentration of ethane to sustain ethane-oxidizing bacteria and ethane and 1,4-Dioxane-co-oxidizing bacteria was 0.09 mg COD/L, which is approximately 20-fold lower than the minimum concentration reported for propane, another common substrate used to promote 1,4-Dioxane biodegradation. The minimum 1,4-Dioxane concentration required to sustain steady-state biomass with 1,4-Dioxane as the sole primary substrate was 1.3 mg COD/L. As 1,4-Dioxane concentrations at most groundwater sites are less than 0.18 mg COD/L, providing ethane as a primary substrate is vital to support biomass growth and consequently enable 1,4-Dioxane bioremediation.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 4","pages":"371 - 388"},"PeriodicalIF":3.1000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous biodegradation kinetics of 1,4-dioxane and ethane\",\"authors\":\"Ermias Gebrekrstos Tesfamariam,&nbsp;Yi-Hao Luo,&nbsp;Chen Zhou,&nbsp;Ming Ye,&nbsp;Rosa Krajmalnik-Brown,&nbsp;Bruce E. Rittmann,&nbsp;Youneng Tang\",\"doi\":\"10.1007/s10532-023-10058-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biodegradation of 1,4-Dioxane at environmentally relevant concentrations usually requires the addition of a primary electron-donor substrate to sustain biomass growth. Ethane is a promising substrate, since it is available as a degradation product of 1,4-Dioxane’s common co-contaminants. This study reports kinetic parameters for ethane biodegradation and co-oxidations of ethane and 1,4-Dioxane. Based on experiments combined with mathematical modeling, we found that ethane promoted 1,4-Dioxane biodegradation when the initial mass ratio of ethane:1,4-Dioxane was &lt; 9:1 mg COD/mg COD, while it inhibited 1,4-Dioxane degradation when the ratio was &gt; 9:1. A model-independent estimator was used for kinetic-parameter estimation, and all parameter values for 1,4-Dioxane were consistent with literature-reported ranges. Estimated parameters support competitive inhibition between ethane as the primary substrate and 1,4-Dioxane as the secondary substrate. The results also support that bacteria that co-oxidize ethane and 1,4-Dioxane had a competitive advantage over bacteria that can use only one of the two substrates. The minimum concentration of ethane to sustain ethane-oxidizing bacteria and ethane and 1,4-Dioxane-co-oxidizing bacteria was 0.09 mg COD/L, which is approximately 20-fold lower than the minimum concentration reported for propane, another common substrate used to promote 1,4-Dioxane biodegradation. The minimum 1,4-Dioxane concentration required to sustain steady-state biomass with 1,4-Dioxane as the sole primary substrate was 1.3 mg COD/L. As 1,4-Dioxane concentrations at most groundwater sites are less than 0.18 mg COD/L, providing ethane as a primary substrate is vital to support biomass growth and consequently enable 1,4-Dioxane bioremediation.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":486,\"journal\":{\"name\":\"Biodegradation\",\"volume\":\"35 4\",\"pages\":\"371 - 388\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodegradation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10532-023-10058-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-023-10058-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

1,4-二恶烷在环境相关浓度下的生物降解通常需要添加初级电子供体底物来维持生物质的生长。乙烷是一种很有前途的底物,因为它是1,4-二恶烷常见共污染物的降解产物。本研究报道了乙烷生物降解和乙烷与1,4-二恶烷共氧化的动力学参数。基于实验和数学建模,我们发现当乙烷与1,4-二恶烷的初始质量比为 9:1.使用模型无关估计器进行动力学参数估计,1,4-二恶烷的所有参数值与文献报道的范围一致。估计的参数支持乙烷作为主要底物和1,4-二恶烷作为次要底物之间的竞争抑制。结果还支持,共氧化乙烷和1,4-二恶烷的细菌比只使用两种底物中一种的细菌具有竞争优势。维持乙烷氧化细菌以及乙烷和1,4-二氧杂环己烷-共氧化细菌的乙烷的最低浓度为0.09 mg COD/L,这比丙烷的最低浓度低约20倍,丙烷是另一种用于促进1,4-二恶烷生物降解的常见底物。以1,4-二恶烷为唯一主要底物维持稳定生物量所需的最小1,4-二氧烷浓度为1.3mg COD/L。由于大多数地下水站点的1,4-二恶烷浓度低于0.18 mg COD/L,提供乙烷作为主要底物对于支持生物量增长至关重要,从而实现1,4-二氧烷的生物修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simultaneous biodegradation kinetics of 1,4-dioxane and ethane

Simultaneous biodegradation kinetics of 1,4-dioxane and ethane

Biodegradation of 1,4-Dioxane at environmentally relevant concentrations usually requires the addition of a primary electron-donor substrate to sustain biomass growth. Ethane is a promising substrate, since it is available as a degradation product of 1,4-Dioxane’s common co-contaminants. This study reports kinetic parameters for ethane biodegradation and co-oxidations of ethane and 1,4-Dioxane. Based on experiments combined with mathematical modeling, we found that ethane promoted 1,4-Dioxane biodegradation when the initial mass ratio of ethane:1,4-Dioxane was < 9:1 mg COD/mg COD, while it inhibited 1,4-Dioxane degradation when the ratio was > 9:1. A model-independent estimator was used for kinetic-parameter estimation, and all parameter values for 1,4-Dioxane were consistent with literature-reported ranges. Estimated parameters support competitive inhibition between ethane as the primary substrate and 1,4-Dioxane as the secondary substrate. The results also support that bacteria that co-oxidize ethane and 1,4-Dioxane had a competitive advantage over bacteria that can use only one of the two substrates. The minimum concentration of ethane to sustain ethane-oxidizing bacteria and ethane and 1,4-Dioxane-co-oxidizing bacteria was 0.09 mg COD/L, which is approximately 20-fold lower than the minimum concentration reported for propane, another common substrate used to promote 1,4-Dioxane biodegradation. The minimum 1,4-Dioxane concentration required to sustain steady-state biomass with 1,4-Dioxane as the sole primary substrate was 1.3 mg COD/L. As 1,4-Dioxane concentrations at most groundwater sites are less than 0.18 mg COD/L, providing ethane as a primary substrate is vital to support biomass growth and consequently enable 1,4-Dioxane bioremediation.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biodegradation
Biodegradation 工程技术-生物工程与应用微生物
CiteScore
5.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms. Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信