Paula Lizana , Ricardo Godoy , Francheska Martínez , Dieter Wicher , Sabine Kaltofen , Leonardo Guzmán , Oscar Ramírez , Diego Cifuentes , Ana Mutis , Herbert Venthur
{"title":"一种高度保守的植物挥发性气味受体检测到大蜡蛾(鳞翅目:梨科)的性信息素成分。","authors":"Paula Lizana , Ricardo Godoy , Francheska Martínez , Dieter Wicher , Sabine Kaltofen , Leonardo Guzmán , Oscar Ramírez , Diego Cifuentes , Ana Mutis , Herbert Venthur","doi":"10.1016/j.ibmb.2023.104031","DOIUrl":null,"url":null,"abstract":"<div><p>Odorant receptors (ORs) are key specialized units for mate and host finding in moths of the Ditrysia clade, to which 98% of the lepidopteran species belong. Moth ORs have evolved to respond to long unsaturated acetates, alcohols, or aldehydes (Type I sex pheromones), falling into conserved clades of pheromone receptors (PRs). These PRs might have evolved from old lineages of non-Ditrysian moths that use plant volatile-like pheromones. However, a Ditrysian moth called the greater wax moth, <em>Galleria mellonella</em> (a worldwide-distributed pest of beehives), uses C<sub>9</sub>–C<sub>11</sub> saturated aldehydes as the main sex pheromone components (i.e., nonanal and undecanal). Thus, these aldehydes represent unusual components compared with the majority of moth species that use, for instance, Type I sex pheromones. Current evidence shows a lack of consensus in the amount of ORs for <em>G. mellonella</em>, although consistent in that the moth does not have conserved PRs. Using genomic data, 62 OR candidates were identified, 16 being new genes. Phylogeny showed no presence of ORs in conserved PR clades. However, an OR with the highest transcript abundance, GmelOR4, appeared in a conserved plant volatile-detecting clade. Functional findings from the HEK system showed the OR as sensitive to nonanal and 2-phenylacetaldehyde, but not to undecanal. It is believed that to date GmelOR4 represents the first, but likely not unique, OR with a stable function in detecting aldehydes that help maintain the life cycle of <em>G. mellonella</em> around honey bee colonies.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"163 ","pages":"Article 104031"},"PeriodicalIF":3.2000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A highly conserved plant volatile odorant receptor detects a sex pheromone component of the greater wax moth, Galleria mellonella (Lepidoptera: Pyralidae)\",\"authors\":\"Paula Lizana , Ricardo Godoy , Francheska Martínez , Dieter Wicher , Sabine Kaltofen , Leonardo Guzmán , Oscar Ramírez , Diego Cifuentes , Ana Mutis , Herbert Venthur\",\"doi\":\"10.1016/j.ibmb.2023.104031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Odorant receptors (ORs) are key specialized units for mate and host finding in moths of the Ditrysia clade, to which 98% of the lepidopteran species belong. Moth ORs have evolved to respond to long unsaturated acetates, alcohols, or aldehydes (Type I sex pheromones), falling into conserved clades of pheromone receptors (PRs). These PRs might have evolved from old lineages of non-Ditrysian moths that use plant volatile-like pheromones. However, a Ditrysian moth called the greater wax moth, <em>Galleria mellonella</em> (a worldwide-distributed pest of beehives), uses C<sub>9</sub>–C<sub>11</sub> saturated aldehydes as the main sex pheromone components (i.e., nonanal and undecanal). Thus, these aldehydes represent unusual components compared with the majority of moth species that use, for instance, Type I sex pheromones. Current evidence shows a lack of consensus in the amount of ORs for <em>G. mellonella</em>, although consistent in that the moth does not have conserved PRs. Using genomic data, 62 OR candidates were identified, 16 being new genes. Phylogeny showed no presence of ORs in conserved PR clades. However, an OR with the highest transcript abundance, GmelOR4, appeared in a conserved plant volatile-detecting clade. Functional findings from the HEK system showed the OR as sensitive to nonanal and 2-phenylacetaldehyde, but not to undecanal. It is believed that to date GmelOR4 represents the first, but likely not unique, OR with a stable function in detecting aldehydes that help maintain the life cycle of <em>G. mellonella</em> around honey bee colonies.</p></div>\",\"PeriodicalId\":330,\"journal\":{\"name\":\"Insect Biochemistry and Molecular Biology\",\"volume\":\"163 \",\"pages\":\"Article 104031\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096517482300125X\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096517482300125X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A highly conserved plant volatile odorant receptor detects a sex pheromone component of the greater wax moth, Galleria mellonella (Lepidoptera: Pyralidae)
Odorant receptors (ORs) are key specialized units for mate and host finding in moths of the Ditrysia clade, to which 98% of the lepidopteran species belong. Moth ORs have evolved to respond to long unsaturated acetates, alcohols, or aldehydes (Type I sex pheromones), falling into conserved clades of pheromone receptors (PRs). These PRs might have evolved from old lineages of non-Ditrysian moths that use plant volatile-like pheromones. However, a Ditrysian moth called the greater wax moth, Galleria mellonella (a worldwide-distributed pest of beehives), uses C9–C11 saturated aldehydes as the main sex pheromone components (i.e., nonanal and undecanal). Thus, these aldehydes represent unusual components compared with the majority of moth species that use, for instance, Type I sex pheromones. Current evidence shows a lack of consensus in the amount of ORs for G. mellonella, although consistent in that the moth does not have conserved PRs. Using genomic data, 62 OR candidates were identified, 16 being new genes. Phylogeny showed no presence of ORs in conserved PR clades. However, an OR with the highest transcript abundance, GmelOR4, appeared in a conserved plant volatile-detecting clade. Functional findings from the HEK system showed the OR as sensitive to nonanal and 2-phenylacetaldehyde, but not to undecanal. It is believed that to date GmelOR4 represents the first, but likely not unique, OR with a stable function in detecting aldehydes that help maintain the life cycle of G. mellonella around honey bee colonies.
期刊介绍:
This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.