Clément Cabriel, Tual Monfort, Christian G. Specht, Ignacio Izeddin
{"title":"用于快速高密度单分子定位显微镜的基于事件的视觉传感器","authors":"Clément Cabriel, Tual Monfort, Christian G. Specht, Ignacio Izeddin","doi":"10.1038/s41566-023-01308-8","DOIUrl":null,"url":null,"abstract":"Single-molecule localization microscopy (SMLM) enables crucial insights into cellular structures and processes to be revealed at the single-molecule level. However, SMLM is often hampered by limited temporal resolution and the fixed frame rate of the acquisition. Here we present a new approach to SMLM data acquisition and processing based on an affordable event-based sensor. This type of sensor reacts to changes in light intensity, rather than integrating photons during the exposure time of each frame. Each pixel works independently and returns a signal only when an intensity change is detected. Compared with video acquisition using traditional electron-multiplying charge-coupled device or scientific complementary metal–oxide–semiconductor cameras, the event-based sensor provides higher temporal resolution and throughput on the positions of blinking molecules. We demonstrate event-based SMLM super-resolution imaging on biological samples with spatial resolution on a par with the performance of electron-multiplying charge-coupled device or scientific complementary metal–oxide–semiconductor cameras, while registering only the on and off switching of blinking molecules. We use event-based SMLM to perform very dense single-molecule imaging, where frame-based cameras experience major limitations. Event-based sensors enable super-resolution single-molecule localization microscopy with comparable quality and resolution to traditional scientific cameras, while also overcoming the limitations of high-density imaging.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 12","pages":"1105-1113"},"PeriodicalIF":32.3000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-based vision sensor for fast and dense single-molecule localization microscopy\",\"authors\":\"Clément Cabriel, Tual Monfort, Christian G. Specht, Ignacio Izeddin\",\"doi\":\"10.1038/s41566-023-01308-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-molecule localization microscopy (SMLM) enables crucial insights into cellular structures and processes to be revealed at the single-molecule level. However, SMLM is often hampered by limited temporal resolution and the fixed frame rate of the acquisition. Here we present a new approach to SMLM data acquisition and processing based on an affordable event-based sensor. This type of sensor reacts to changes in light intensity, rather than integrating photons during the exposure time of each frame. Each pixel works independently and returns a signal only when an intensity change is detected. Compared with video acquisition using traditional electron-multiplying charge-coupled device or scientific complementary metal–oxide–semiconductor cameras, the event-based sensor provides higher temporal resolution and throughput on the positions of blinking molecules. We demonstrate event-based SMLM super-resolution imaging on biological samples with spatial resolution on a par with the performance of electron-multiplying charge-coupled device or scientific complementary metal–oxide–semiconductor cameras, while registering only the on and off switching of blinking molecules. We use event-based SMLM to perform very dense single-molecule imaging, where frame-based cameras experience major limitations. Event-based sensors enable super-resolution single-molecule localization microscopy with comparable quality and resolution to traditional scientific cameras, while also overcoming the limitations of high-density imaging.\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"17 12\",\"pages\":\"1105-1113\"},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41566-023-01308-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-023-01308-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Event-based vision sensor for fast and dense single-molecule localization microscopy
Single-molecule localization microscopy (SMLM) enables crucial insights into cellular structures and processes to be revealed at the single-molecule level. However, SMLM is often hampered by limited temporal resolution and the fixed frame rate of the acquisition. Here we present a new approach to SMLM data acquisition and processing based on an affordable event-based sensor. This type of sensor reacts to changes in light intensity, rather than integrating photons during the exposure time of each frame. Each pixel works independently and returns a signal only when an intensity change is detected. Compared with video acquisition using traditional electron-multiplying charge-coupled device or scientific complementary metal–oxide–semiconductor cameras, the event-based sensor provides higher temporal resolution and throughput on the positions of blinking molecules. We demonstrate event-based SMLM super-resolution imaging on biological samples with spatial resolution on a par with the performance of electron-multiplying charge-coupled device or scientific complementary metal–oxide–semiconductor cameras, while registering only the on and off switching of blinking molecules. We use event-based SMLM to perform very dense single-molecule imaging, where frame-based cameras experience major limitations. Event-based sensors enable super-resolution single-molecule localization microscopy with comparable quality and resolution to traditional scientific cameras, while also overcoming the limitations of high-density imaging.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.