可穿戴ECG设备干电极几何优化

IF 11.9 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Peter Francis Mathew Elango, Shanmuga Sundar Dhanabalan, Md Rokunuzzaman Robel, Sherly Pushpam Elango, Sumeet Walia, Sharath Sriram, Madhu Bhaskaran
{"title":"可穿戴ECG设备干电极几何优化","authors":"Peter Francis Mathew Elango, Shanmuga Sundar Dhanabalan, Md Rokunuzzaman Robel, Sherly Pushpam Elango, Sumeet Walia, Sharath Sriram, Madhu Bhaskaran","doi":"10.1063/5.0152554","DOIUrl":null,"url":null,"abstract":"Wearable electronic devices, particularly for health monitoring, have seen rapid advancements in recent times. Among the various biophysical parameters that are of interest in a wearable device, an electrocardiogram (ECG) is critical as it enables detection of cardiovascular-related ailments and assessment of overall cardiac health. In a wearable ECG device, the choice of electrode design and material plays a key role in the performance of the sensor. In this work, we have explored various dry electrode-based sensor design geometries to realize a compact, lightweight, portable, gel-free wearable ECG patch that would aid in point-of-care (PoC) diagnostics. Furthermore, we have studied the influence of the region of the body at which the measurements were made under different body positions across varying external stimuli. We have studied the influence of surface area, perimeter and resistance offered by the electrodes on the ECG signal acquisition, its effects on device performance and found the hexagonal labyrinth configuration to be the most suitable candidate. A prototype of a wearable ECG patch was made by combining this electrode configuration and interfacing with wireless communication capabilities, and the results were compared with a commercially available portable ECG monitor. Such a device could find potential application in remote healthcare and ambulatory care settings, and as a PoC and a preventive medical device.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"3 6","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dry electrode geometry optimization for wearable ECG devices\",\"authors\":\"Peter Francis Mathew Elango, Shanmuga Sundar Dhanabalan, Md Rokunuzzaman Robel, Sherly Pushpam Elango, Sumeet Walia, Sharath Sriram, Madhu Bhaskaran\",\"doi\":\"10.1063/5.0152554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wearable electronic devices, particularly for health monitoring, have seen rapid advancements in recent times. Among the various biophysical parameters that are of interest in a wearable device, an electrocardiogram (ECG) is critical as it enables detection of cardiovascular-related ailments and assessment of overall cardiac health. In a wearable ECG device, the choice of electrode design and material plays a key role in the performance of the sensor. In this work, we have explored various dry electrode-based sensor design geometries to realize a compact, lightweight, portable, gel-free wearable ECG patch that would aid in point-of-care (PoC) diagnostics. Furthermore, we have studied the influence of the region of the body at which the measurements were made under different body positions across varying external stimuli. We have studied the influence of surface area, perimeter and resistance offered by the electrodes on the ECG signal acquisition, its effects on device performance and found the hexagonal labyrinth configuration to be the most suitable candidate. A prototype of a wearable ECG patch was made by combining this electrode configuration and interfacing with wireless communication capabilities, and the results were compared with a commercially available portable ECG monitor. Such a device could find potential application in remote healthcare and ambulatory care settings, and as a PoC and a preventive medical device.\",\"PeriodicalId\":8200,\"journal\":{\"name\":\"Applied physics reviews\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physics reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0152554\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0152554","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

近年来,可穿戴电子设备,特别是用于健康监测的电子设备发展迅速。在可穿戴设备感兴趣的各种生物物理参数中,心电图(ECG)至关重要,因为它可以检测心血管相关疾病并评估整体心脏健康状况。在可穿戴式心电设备中,电极设计和材料的选择对传感器的性能起着至关重要的作用。在这项工作中,我们探索了各种基于干电极的传感器设计几何形状,以实现紧凑,轻便,便携,无凝胶的可穿戴ECG贴片,有助于即时诊断(PoC)。此外,我们还研究了在不同的外部刺激下,在不同的身体姿势下进行测量的身体区域的影响。我们研究了电极的表面积、周长和电阻对心电信号采集的影响及其对器件性能的影响,发现六边形迷宫结构是最合适的选择。将该电极配置与无线通信功能相结合,制成了可穿戴ECG贴片的原型,并将结果与市售的便携式ECG监护仪进行了比较。这种设备可以在远程医疗保健和门诊护理环境中找到潜在的应用,并作为PoC和预防性医疗设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dry electrode geometry optimization for wearable ECG devices
Wearable electronic devices, particularly for health monitoring, have seen rapid advancements in recent times. Among the various biophysical parameters that are of interest in a wearable device, an electrocardiogram (ECG) is critical as it enables detection of cardiovascular-related ailments and assessment of overall cardiac health. In a wearable ECG device, the choice of electrode design and material plays a key role in the performance of the sensor. In this work, we have explored various dry electrode-based sensor design geometries to realize a compact, lightweight, portable, gel-free wearable ECG patch that would aid in point-of-care (PoC) diagnostics. Furthermore, we have studied the influence of the region of the body at which the measurements were made under different body positions across varying external stimuli. We have studied the influence of surface area, perimeter and resistance offered by the electrodes on the ECG signal acquisition, its effects on device performance and found the hexagonal labyrinth configuration to be the most suitable candidate. A prototype of a wearable ECG patch was made by combining this electrode configuration and interfacing with wireless communication capabilities, and the results were compared with a commercially available portable ECG monitor. Such a device could find potential application in remote healthcare and ambulatory care settings, and as a PoC and a preventive medical device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied physics reviews
Applied physics reviews PHYSICS, APPLIED-
CiteScore
22.50
自引率
2.00%
发文量
113
审稿时长
2 months
期刊介绍: Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles: Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community. Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信