{"title":"通过协同外推(Synx)和肌电驱动建模预测上肢肌肉激活模式。","authors":"Shadman Tahmid, Josep M Font-Llagunes, James Yang","doi":"10.1115/1.4063899","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with neuromuscular disease fail to produce necessary muscle force and have trouble maintaining joint moment required to perform activities of daily living. Measuring muscle force values in patients with neuromuscular disease is important but challenging. Electromyography (EMG) can be used to obtain muscle activation values, which can be converted to muscle forces and joint torques. Surface electrodes can measure activations of superficial muscles, but fine-wire electrodes are needed for deep muscles, although it is invasive and require skilled personnel and preparation time. EMG-driven modeling with surface electrodes alone could underestimate the net torque. In this research, authors propose a methodology to predict muscle activations from deeper muscles of the upper extremity. This method finds missing muscle activation one at a time by combining an EMG-driven musculoskeletal model and muscle synergies. This method tracks inverse dynamics joint moments to determine synergy vector weights and predict muscle activation of selected shoulder and elbow muscles of a healthy subject. In addition, muscle-tendon parameter values (optimal fiber length, tendon slack length, and maximum isometric force) have been personalized to the experimental subject. The methodology is tested for a wide range of rehabilitation tasks of the upper extremity across multiple healthy subjects. Results show this methodology can determine single unmeasured muscle activation up to Pearson's correlation coefficient (R) of 0.99 (root mean squared error, RMSE = 0.001) and 0.92 (RMSE = 0.13) for the elbow and shoulder muscles, respectively, for one degree-of-freedom (DoF) tasks. For more complicated five DoF tasks, activation prediction accuracy can reach up to R = 0.71 (RMSE = 0.29).</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper Extremity Muscle Activation Pattern Prediction Through Synergy Extrapolation and Electromyography-Driven Modeling.\",\"authors\":\"Shadman Tahmid, Josep M Font-Llagunes, James Yang\",\"doi\":\"10.1115/1.4063899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Patients with neuromuscular disease fail to produce necessary muscle force and have trouble maintaining joint moment required to perform activities of daily living. Measuring muscle force values in patients with neuromuscular disease is important but challenging. Electromyography (EMG) can be used to obtain muscle activation values, which can be converted to muscle forces and joint torques. Surface electrodes can measure activations of superficial muscles, but fine-wire electrodes are needed for deep muscles, although it is invasive and require skilled personnel and preparation time. EMG-driven modeling with surface electrodes alone could underestimate the net torque. In this research, authors propose a methodology to predict muscle activations from deeper muscles of the upper extremity. This method finds missing muscle activation one at a time by combining an EMG-driven musculoskeletal model and muscle synergies. This method tracks inverse dynamics joint moments to determine synergy vector weights and predict muscle activation of selected shoulder and elbow muscles of a healthy subject. In addition, muscle-tendon parameter values (optimal fiber length, tendon slack length, and maximum isometric force) have been personalized to the experimental subject. The methodology is tested for a wide range of rehabilitation tasks of the upper extremity across multiple healthy subjects. Results show this methodology can determine single unmeasured muscle activation up to Pearson's correlation coefficient (R) of 0.99 (root mean squared error, RMSE = 0.001) and 0.92 (RMSE = 0.13) for the elbow and shoulder muscles, respectively, for one degree-of-freedom (DoF) tasks. For more complicated five DoF tasks, activation prediction accuracy can reach up to R = 0.71 (RMSE = 0.29).</p>\",\"PeriodicalId\":54871,\"journal\":{\"name\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063899\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063899","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Upper Extremity Muscle Activation Pattern Prediction Through Synergy Extrapolation and Electromyography-Driven Modeling.
Patients with neuromuscular disease fail to produce necessary muscle force and have trouble maintaining joint moment required to perform activities of daily living. Measuring muscle force values in patients with neuromuscular disease is important but challenging. Electromyography (EMG) can be used to obtain muscle activation values, which can be converted to muscle forces and joint torques. Surface electrodes can measure activations of superficial muscles, but fine-wire electrodes are needed for deep muscles, although it is invasive and require skilled personnel and preparation time. EMG-driven modeling with surface electrodes alone could underestimate the net torque. In this research, authors propose a methodology to predict muscle activations from deeper muscles of the upper extremity. This method finds missing muscle activation one at a time by combining an EMG-driven musculoskeletal model and muscle synergies. This method tracks inverse dynamics joint moments to determine synergy vector weights and predict muscle activation of selected shoulder and elbow muscles of a healthy subject. In addition, muscle-tendon parameter values (optimal fiber length, tendon slack length, and maximum isometric force) have been personalized to the experimental subject. The methodology is tested for a wide range of rehabilitation tasks of the upper extremity across multiple healthy subjects. Results show this methodology can determine single unmeasured muscle activation up to Pearson's correlation coefficient (R) of 0.99 (root mean squared error, RMSE = 0.001) and 0.92 (RMSE = 0.13) for the elbow and shoulder muscles, respectively, for one degree-of-freedom (DoF) tasks. For more complicated five DoF tasks, activation prediction accuracy can reach up to R = 0.71 (RMSE = 0.29).
期刊介绍:
Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.