{"title":"基于单次试验脑电图信号预测岩石剪刀的选择。","authors":"Zetong He, Lidan Cui, Shunmin Zhang, Guibing He","doi":"10.1002/pchj.688","DOIUrl":null,"url":null,"abstract":"<p><p>Decision prediction based on neurophysiological signals is of great application value in many real-life situations, especially in human-AI collaboration or counteraction. Single-trial analysis of electroencephalogram (EEG) signals is a very valuable step in the development of an online decision-prediction system. However, previous EEG-based decision-prediction methods focused mainly on averaged EEG signals of all decision-making trials to predict an individual's general decision tendency (e.g., risk seeking or aversion) over a period rather than on a specific decision response in a single trial. In the present study, we used a rock-paper-scissors game, which is a common multichoice decision-making task, to explore how to predict participants' single-trial choice with EEG signals. Forty participants, comprising 20 females and 20 males, played the game with a computer player for 330 trials. Considering that the decision-making process of this game involves multiple brain regions and neural networks, we proposed a new algorithm named common spatial pattern-attractor metagene (CSP-AM) to extract CSP features from different frequency bands of EEG signals that occurred during decision making. The results showed that a multilayer perceptron classifier achieved an accuracy significantly exceeding the chance level among 88.57% (31 of 35) of participants, verifying the classification ability of CSP features in multichoice decision-making prediction. We believe that the CSP-AM algorithm could be used in the development of proactive AI systems.</p>","PeriodicalId":20804,"journal":{"name":"PsyCh journal","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917104/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting rock-paper-scissors choices based on single-trial EEG signals.\",\"authors\":\"Zetong He, Lidan Cui, Shunmin Zhang, Guibing He\",\"doi\":\"10.1002/pchj.688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Decision prediction based on neurophysiological signals is of great application value in many real-life situations, especially in human-AI collaboration or counteraction. Single-trial analysis of electroencephalogram (EEG) signals is a very valuable step in the development of an online decision-prediction system. However, previous EEG-based decision-prediction methods focused mainly on averaged EEG signals of all decision-making trials to predict an individual's general decision tendency (e.g., risk seeking or aversion) over a period rather than on a specific decision response in a single trial. In the present study, we used a rock-paper-scissors game, which is a common multichoice decision-making task, to explore how to predict participants' single-trial choice with EEG signals. Forty participants, comprising 20 females and 20 males, played the game with a computer player for 330 trials. Considering that the decision-making process of this game involves multiple brain regions and neural networks, we proposed a new algorithm named common spatial pattern-attractor metagene (CSP-AM) to extract CSP features from different frequency bands of EEG signals that occurred during decision making. The results showed that a multilayer perceptron classifier achieved an accuracy significantly exceeding the chance level among 88.57% (31 of 35) of participants, verifying the classification ability of CSP features in multichoice decision-making prediction. We believe that the CSP-AM algorithm could be used in the development of proactive AI systems.</p>\",\"PeriodicalId\":20804,\"journal\":{\"name\":\"PsyCh journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917104/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PsyCh journal\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1002/pchj.688\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PsyCh journal","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1002/pchj.688","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
Predicting rock-paper-scissors choices based on single-trial EEG signals.
Decision prediction based on neurophysiological signals is of great application value in many real-life situations, especially in human-AI collaboration or counteraction. Single-trial analysis of electroencephalogram (EEG) signals is a very valuable step in the development of an online decision-prediction system. However, previous EEG-based decision-prediction methods focused mainly on averaged EEG signals of all decision-making trials to predict an individual's general decision tendency (e.g., risk seeking or aversion) over a period rather than on a specific decision response in a single trial. In the present study, we used a rock-paper-scissors game, which is a common multichoice decision-making task, to explore how to predict participants' single-trial choice with EEG signals. Forty participants, comprising 20 females and 20 males, played the game with a computer player for 330 trials. Considering that the decision-making process of this game involves multiple brain regions and neural networks, we proposed a new algorithm named common spatial pattern-attractor metagene (CSP-AM) to extract CSP features from different frequency bands of EEG signals that occurred during decision making. The results showed that a multilayer perceptron classifier achieved an accuracy significantly exceeding the chance level among 88.57% (31 of 35) of participants, verifying the classification ability of CSP features in multichoice decision-making prediction. We believe that the CSP-AM algorithm could be used in the development of proactive AI systems.
期刊介绍:
PsyCh Journal, China''s first international psychology journal, publishes peer‑reviewed research articles, research reports and integrated research reviews spanning the entire spectrum of scientific psychology and its applications. PsyCh Journal is the flagship journal of the Institute of Psychology, Chinese Academy of Sciences – the only national psychology research institute in China – and reflects the high research standards of the nation. Launched in 2012, PsyCh Journal is devoted to the publication of advanced research exploring basic mechanisms of the human mind and behavior, and delivering scientific knowledge to enhance understanding of culture and society. Towards that broader goal, the Journal will provide a forum for academic exchange and a “knowledge bridge” between China and the World by showcasing high-quality, cutting-edge research related to the science and practice of psychology both within and outside of China. PsyCh Journal features original articles of both empirical and theoretical research in scientific psychology and interdisciplinary sciences, across all levels, from molecular, cellular and system, to individual, group and society. The Journal also publishes evaluative and integrative review papers on any significant research contribution in any area of scientific psychology