Qinggang Meng, Junbo Wang, Deyong Chen, Jian Chen, Bo Xie, Yulan Lu
{"title":"一种新的无参数MEMS结构设计进化方法及其在压阻式压力传感器中的应用。","authors":"Qinggang Meng, Junbo Wang, Deyong Chen, Jian Chen, Bo Xie, Yulan Lu","doi":"10.1038/s41378-023-00596-y","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a novel simulation-based evolutionary method is presented for designing parameter-free MEMS structures with maximum degrees of freedom. This novel design method enabled semiautomatic structure evolution by weighing the attributes of each segment of the structure and yielded an optimal design after multiple iterations. The proposed method was utilized to optimize the pressure-sensitive diaphragm of a piezoresistive pressure sensor (PPS). Finite element method (FEM) simulations revealed that, in comparison to conventional diaphragms without islands and with square islands, the optimized diaphragm increased the stress by 10% and 16% and reduced the nonlinearity by 57% and 77%, respectively. These improvements demonstrate the value of this method. Characterization of the fabricated PPS revealed a high sensitivity of 8.8 mV V<sup>-1</sup> MPa<sup>-1</sup> and a low nonlinearity of 0.058% FS at 20 °C, indicating excellent sensor performance.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"9 ","pages":"134"},"PeriodicalIF":7.3000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600208/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel evolutionary method for parameter-free MEMS structural design and its application in piezoresistive pressure sensors.\",\"authors\":\"Qinggang Meng, Junbo Wang, Deyong Chen, Jian Chen, Bo Xie, Yulan Lu\",\"doi\":\"10.1038/s41378-023-00596-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, a novel simulation-based evolutionary method is presented for designing parameter-free MEMS structures with maximum degrees of freedom. This novel design method enabled semiautomatic structure evolution by weighing the attributes of each segment of the structure and yielded an optimal design after multiple iterations. The proposed method was utilized to optimize the pressure-sensitive diaphragm of a piezoresistive pressure sensor (PPS). Finite element method (FEM) simulations revealed that, in comparison to conventional diaphragms without islands and with square islands, the optimized diaphragm increased the stress by 10% and 16% and reduced the nonlinearity by 57% and 77%, respectively. These improvements demonstrate the value of this method. Characterization of the fabricated PPS revealed a high sensitivity of 8.8 mV V<sup>-1</sup> MPa<sup>-1</sup> and a low nonlinearity of 0.058% FS at 20 °C, indicating excellent sensor performance.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"9 \",\"pages\":\"134\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600208/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-023-00596-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-023-00596-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
A novel evolutionary method for parameter-free MEMS structural design and its application in piezoresistive pressure sensors.
In this paper, a novel simulation-based evolutionary method is presented for designing parameter-free MEMS structures with maximum degrees of freedom. This novel design method enabled semiautomatic structure evolution by weighing the attributes of each segment of the structure and yielded an optimal design after multiple iterations. The proposed method was utilized to optimize the pressure-sensitive diaphragm of a piezoresistive pressure sensor (PPS). Finite element method (FEM) simulations revealed that, in comparison to conventional diaphragms without islands and with square islands, the optimized diaphragm increased the stress by 10% and 16% and reduced the nonlinearity by 57% and 77%, respectively. These improvements demonstrate the value of this method. Characterization of the fabricated PPS revealed a high sensitivity of 8.8 mV V-1 MPa-1 and a low nonlinearity of 0.058% FS at 20 °C, indicating excellent sensor performance.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.