Katia Margiotti, Francesca Monaco, Marco Fabiani, Alvaro Mesoraca, Claudio Giorlandino
{"title":"表观遗传学时钟:在与AGING相关和复杂的疾病中。","authors":"Katia Margiotti, Francesca Monaco, Marco Fabiani, Alvaro Mesoraca, Claudio Giorlandino","doi":"10.1159/000534561","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There is evidence that complex diseases and mortality are associated with DNA methylation and age acceleration. Numerous epigenetic clocks, including Horvath, Hannum, DNA PhenoAge, DNA GrimAge, and Dunedin Pace of Aging Methylation, continue to be developed in this young scientific field. The most well-known epigenetic clocks are presented here, along with information about how they relate to chronic disease.</p><p><strong>Summary: </strong>We examined all the literature until January 2023, investigating associations between measures of age acceleration and complex and age-related diseases. We focused on the scientific literature and research that are most strongly associated with epigenetic clocks and that have shown promise as biomarkers for obesity, cardiovascular illness, type 2 diabetes, and neurodegenerative disease.</p><p><strong>Key messages: </strong>Understanding the complex interactions between accelerated epigenetic clocks and chronic diseases may have significant effects on both the early diagnosis of disease and health promotion. Additionally, there is a lot of interest in developing treatment plans that can delay the onset of illnesses or, at the very least, alter the underlying causes of such disorders.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epigenetic Clocks: In Aging-Related and Complex Diseases.\",\"authors\":\"Katia Margiotti, Francesca Monaco, Marco Fabiani, Alvaro Mesoraca, Claudio Giorlandino\",\"doi\":\"10.1159/000534561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>There is evidence that complex diseases and mortality are associated with DNA methylation and age acceleration. Numerous epigenetic clocks, including Horvath, Hannum, DNA PhenoAge, DNA GrimAge, and Dunedin Pace of Aging Methylation, continue to be developed in this young scientific field. The most well-known epigenetic clocks are presented here, along with information about how they relate to chronic disease.</p><p><strong>Summary: </strong>We examined all the literature until January 2023, investigating associations between measures of age acceleration and complex and age-related diseases. We focused on the scientific literature and research that are most strongly associated with epigenetic clocks and that have shown promise as biomarkers for obesity, cardiovascular illness, type 2 diabetes, and neurodegenerative disease.</p><p><strong>Key messages: </strong>Understanding the complex interactions between accelerated epigenetic clocks and chronic diseases may have significant effects on both the early diagnosis of disease and health promotion. Additionally, there is a lot of interest in developing treatment plans that can delay the onset of illnesses or, at the very least, alter the underlying causes of such disorders.</p>\",\"PeriodicalId\":11206,\"journal\":{\"name\":\"Cytogenetic and Genome Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytogenetic and Genome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000534561\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytogenetic and Genome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000534561","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Epigenetic Clocks: In Aging-Related and Complex Diseases.
Background: There is evidence that complex diseases and mortality are associated with DNA methylation and age acceleration. Numerous epigenetic clocks, including Horvath, Hannum, DNA PhenoAge, DNA GrimAge, and Dunedin Pace of Aging Methylation, continue to be developed in this young scientific field. The most well-known epigenetic clocks are presented here, along with information about how they relate to chronic disease.
Summary: We examined all the literature until January 2023, investigating associations between measures of age acceleration and complex and age-related diseases. We focused on the scientific literature and research that are most strongly associated with epigenetic clocks and that have shown promise as biomarkers for obesity, cardiovascular illness, type 2 diabetes, and neurodegenerative disease.
Key messages: Understanding the complex interactions between accelerated epigenetic clocks and chronic diseases may have significant effects on both the early diagnosis of disease and health promotion. Additionally, there is a lot of interest in developing treatment plans that can delay the onset of illnesses or, at the very least, alter the underlying causes of such disorders.
期刊介绍:
During the last decades, ''Cytogenetic and Genome Research'' has been the leading forum for original reports and reviews in human and animal cytogenetics, including molecular, clinical and comparative cytogenetics. In recent years, most of its papers have centered on genome research, including gene cloning and sequencing, gene mapping, gene regulation and expression, cancer genetics, comparative genetics, gene linkage and related areas. The journal also publishes key papers on chromosome aberrations in somatic, meiotic and malignant cells. Its scope has expanded to include studies on invertebrate and plant cytogenetics and genomics. Also featured are the vast majority of the reports of the International Workshops on Human Chromosome Mapping, the reports of international human and animal chromosome nomenclature committees, and proceedings of the American and European cytogenetic conferences and other events. In addition to regular issues, the journal has been publishing since 2002 a series of topical issues on a broad variety of themes from cytogenetic and genome research.