醛脱氢酶1的ALDH1A1和ALDH1A3同源物通过维甲酸依赖性和非依赖性机制控制骨骼肌卫星细胞的肌源性分化。

IF 3.2 3区 生物学 Q3 CELL BIOLOGY
Cell and Tissue Research Pub Date : 2023-12-01 Epub Date: 2023-10-31 DOI:10.1007/s00441-023-03838-7
Laura Steingruber, Florian Krabichler, Sophie Franzmeier, Wei Wu, Jürgen Schlegel, Marco Koch
{"title":"醛脱氢酶1的ALDH1A1和ALDH1A3同源物通过维甲酸依赖性和非依赖性机制控制骨骼肌卫星细胞的肌源性分化。","authors":"Laura Steingruber, Florian Krabichler, Sophie Franzmeier, Wei Wu, Jürgen Schlegel, Marco Koch","doi":"10.1007/s00441-023-03838-7","DOIUrl":null,"url":null,"abstract":"<p><p>ALDH1A1 and ALDH1A3 paralogues of aldehyde dehydrogenase 1 (ALDH1) control myogenic differentiation of skeletal muscle satellite cells (SC) by formation of retinoic acid (RA) and subsequent cell cycle adjustments. The respective relevance of each paralogue for myogenic differentiation and the mechanistic interaction of each paralogue within RA-dependent and RA-independent pathways remain elusive.We analysed the impact of ALDH1A1 and ALDH1A3 activity on myogenesis of murine C2C12 myoblasts. Both paralogues are pivotal factors in myogenic differentiation, since CRISPR/Cas9-edited single paralogue knock-out impaired serum withdrawal-induced myogenic differentiation, while successive recombinant re-expression of ALDH1A1 or ALDH1A3, respectively, in the corresponding ALDH1 paralogue single knock-out cell lines, recovered the differentiation potential. Loss of differentiation in single knock-out cell lines was restored by treatment with RA-analogue TTNPB, while RA-receptor antagonization by AGN 193109 inhibited differentiation of wildtype cell lines, supporting the idea that RA-dependent pathway is pivotal for myogenic differentiation which is accomplished by both paralogues.However, overexpression of ALDH1-paralogues or disulfiram-mediated inhibition of ALDH1 enzymatic activity not only increased ALDH1A1 and ALDH1A3 protein levels but also induced subsequent differentiation of C2C12 myoblasts independently from serum withdrawal, indicating that ALDH1-dependent myogenic differentiation relies on different cellular conditions. Remarkably, ALDH1-paralogue knock-out impaired the autophagic flux, namely autophagosome cargo protein p62 formation and LC3B-I to LC3B-II conversion, demonstrating that ALDH1-paralogues interact with autophagy in myogenesis. Together, ALDH1 paralogues play a crucial role in myogenesis by orchestration of complex RA-dependent and RA-independent pathways.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ALDH1A1 and ALDH1A3 paralogues of aldehyde dehydrogenase 1 control myogenic differentiation of skeletal muscle satellite cells by retinoic acid-dependent and -independent mechanisms.\",\"authors\":\"Laura Steingruber, Florian Krabichler, Sophie Franzmeier, Wei Wu, Jürgen Schlegel, Marco Koch\",\"doi\":\"10.1007/s00441-023-03838-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ALDH1A1 and ALDH1A3 paralogues of aldehyde dehydrogenase 1 (ALDH1) control myogenic differentiation of skeletal muscle satellite cells (SC) by formation of retinoic acid (RA) and subsequent cell cycle adjustments. The respective relevance of each paralogue for myogenic differentiation and the mechanistic interaction of each paralogue within RA-dependent and RA-independent pathways remain elusive.We analysed the impact of ALDH1A1 and ALDH1A3 activity on myogenesis of murine C2C12 myoblasts. Both paralogues are pivotal factors in myogenic differentiation, since CRISPR/Cas9-edited single paralogue knock-out impaired serum withdrawal-induced myogenic differentiation, while successive recombinant re-expression of ALDH1A1 or ALDH1A3, respectively, in the corresponding ALDH1 paralogue single knock-out cell lines, recovered the differentiation potential. Loss of differentiation in single knock-out cell lines was restored by treatment with RA-analogue TTNPB, while RA-receptor antagonization by AGN 193109 inhibited differentiation of wildtype cell lines, supporting the idea that RA-dependent pathway is pivotal for myogenic differentiation which is accomplished by both paralogues.However, overexpression of ALDH1-paralogues or disulfiram-mediated inhibition of ALDH1 enzymatic activity not only increased ALDH1A1 and ALDH1A3 protein levels but also induced subsequent differentiation of C2C12 myoblasts independently from serum withdrawal, indicating that ALDH1-dependent myogenic differentiation relies on different cellular conditions. Remarkably, ALDH1-paralogue knock-out impaired the autophagic flux, namely autophagosome cargo protein p62 formation and LC3B-I to LC3B-II conversion, demonstrating that ALDH1-paralogues interact with autophagy in myogenesis. Together, ALDH1 paralogues play a crucial role in myogenesis by orchestration of complex RA-dependent and RA-independent pathways.</p>\",\"PeriodicalId\":9712,\"journal\":{\"name\":\"Cell and Tissue Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Tissue Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00441-023-03838-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-023-03838-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

醛脱氢酶1(ALDH1)的ALDH1A1和ALDH1A3同源物通过形成视黄酸(RA)和随后的细胞周期调节来控制骨骼肌卫星细胞(SC)的肌源性分化。每个旁系与肌源性分化的相关性以及每个旁系在RA依赖性和RA非依赖性通路中的机制相互作用仍然难以捉摸。我们分析了ALDH1A1和ALDH1A3活性对小鼠C2C12成肌细胞成肌的影响。两种旁系同源物都是肌源性分化的关键因素,因为CRISPR/Cas9编辑的单旁系同源敲除损害了血清戒断诱导的肌源性细胞分化,而在相应的ALDH1旁系同源单敲除细胞系中分别连续重组ALDH1A1或ALDH1A3,恢复了分化潜力。通过用RA类似物TTNPB处理恢复了单敲除细胞系中分化的丧失,而AGN 193109拮抗RA受体抑制了野生型细胞系的分化,支持了RA依赖性途径对肌源性分化至关重要的观点,这是由两种旁系完成的。然而,ALDH1同源物的过表达或双硫仑介导的ALDH1酶活性的抑制不仅增加了ALDH1A1和ALDH1A3蛋白水平,而且诱导了C2C12成肌细胞的随后分化,而不依赖于血清戒断,这表明ALDH1依赖性肌源分化依赖于不同的细胞条件。值得注意的是,ALDH1旁系同源物敲除损害了自噬流量,即自噬体货物蛋白p62的形成和LC3B-I到LC3B-II的转化,表明ALDH1旁系同源物在肌发生中与自噬相互作用。ALDH1旁系同源物通过协调复杂的RA依赖性和RA非依赖性途径在肌发生中发挥着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

ALDH1A1 and ALDH1A3 paralogues of aldehyde dehydrogenase 1 control myogenic differentiation of skeletal muscle satellite cells by retinoic acid-dependent and -independent mechanisms.

ALDH1A1 and ALDH1A3 paralogues of aldehyde dehydrogenase 1 control myogenic differentiation of skeletal muscle satellite cells by retinoic acid-dependent and -independent mechanisms.

ALDH1A1 and ALDH1A3 paralogues of aldehyde dehydrogenase 1 (ALDH1) control myogenic differentiation of skeletal muscle satellite cells (SC) by formation of retinoic acid (RA) and subsequent cell cycle adjustments. The respective relevance of each paralogue for myogenic differentiation and the mechanistic interaction of each paralogue within RA-dependent and RA-independent pathways remain elusive.We analysed the impact of ALDH1A1 and ALDH1A3 activity on myogenesis of murine C2C12 myoblasts. Both paralogues are pivotal factors in myogenic differentiation, since CRISPR/Cas9-edited single paralogue knock-out impaired serum withdrawal-induced myogenic differentiation, while successive recombinant re-expression of ALDH1A1 or ALDH1A3, respectively, in the corresponding ALDH1 paralogue single knock-out cell lines, recovered the differentiation potential. Loss of differentiation in single knock-out cell lines was restored by treatment with RA-analogue TTNPB, while RA-receptor antagonization by AGN 193109 inhibited differentiation of wildtype cell lines, supporting the idea that RA-dependent pathway is pivotal for myogenic differentiation which is accomplished by both paralogues.However, overexpression of ALDH1-paralogues or disulfiram-mediated inhibition of ALDH1 enzymatic activity not only increased ALDH1A1 and ALDH1A3 protein levels but also induced subsequent differentiation of C2C12 myoblasts independently from serum withdrawal, indicating that ALDH1-dependent myogenic differentiation relies on different cellular conditions. Remarkably, ALDH1-paralogue knock-out impaired the autophagic flux, namely autophagosome cargo protein p62 formation and LC3B-I to LC3B-II conversion, demonstrating that ALDH1-paralogues interact with autophagy in myogenesis. Together, ALDH1 paralogues play a crucial role in myogenesis by orchestration of complex RA-dependent and RA-independent pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell and Tissue Research
Cell and Tissue Research 生物-细胞生物学
CiteScore
7.00
自引率
2.80%
发文量
142
审稿时长
1 months
期刊介绍: The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include: - neurobiology - neuroendocrinology - endocrinology - reproductive biology - skeletal and immune systems - development - stem cells - muscle biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信