Antonín Dvořák使用变体自动编码器生成特定流派的音乐转录

IF 0.1 0 MUSIC
Daniel Kvak
{"title":"Antonín Dvořák使用变体自动编码器生成特定流派的音乐转录","authors":"Daniel Kvak","doi":"10.5817/mb2021-2-5","DOIUrl":null,"url":null,"abstract":"Apart from traditional deep learning tasks such as pattern recognition, stock price prediction, and machine translation, this method also finds practical application within algorithmic composition. This paper explores the use of a generative model based on unsupervised learning of a musical style from a pre-selected corpus and the subsequent prediction of samples from the estimated distribution. The model uses a Long Short-Term Memory neural network whose training data contains genre-specific melodies in symbolic representation.","PeriodicalId":53757,"journal":{"name":"Musicologica Brunensia","volume":"1 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generování žánrově specifické hudební transkripce Antonína Dvořáka prostřednictvím variačního autoenkodéru\",\"authors\":\"Daniel Kvak\",\"doi\":\"10.5817/mb2021-2-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Apart from traditional deep learning tasks such as pattern recognition, stock price prediction, and machine translation, this method also finds practical application within algorithmic composition. This paper explores the use of a generative model based on unsupervised learning of a musical style from a pre-selected corpus and the subsequent prediction of samples from the estimated distribution. The model uses a Long Short-Term Memory neural network whose training data contains genre-specific melodies in symbolic representation.\",\"PeriodicalId\":53757,\"journal\":{\"name\":\"Musicologica Brunensia\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Musicologica Brunensia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5817/mb2021-2-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MUSIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Musicologica Brunensia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/mb2021-2-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MUSIC","Score":null,"Total":0}
引用次数: 0

摘要

除了传统的深度学习任务,如模式识别、股票价格预测和机器翻译,这种方法在算法组成中也有实际应用。本文探索了一种基于无监督学习的生成模型的使用,该模型从预先选择的语料库中学习音乐风格,并随后从估计的分布中预测样本。该模型使用长短期记忆神经网络,其训练数据包含特定类型旋律的符号表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generování žánrově specifické hudební transkripce Antonína Dvořáka prostřednictvím variačního autoenkodéru
Apart from traditional deep learning tasks such as pattern recognition, stock price prediction, and machine translation, this method also finds practical application within algorithmic composition. This paper explores the use of a generative model based on unsupervised learning of a musical style from a pre-selected corpus and the subsequent prediction of samples from the estimated distribution. The model uses a Long Short-Term Memory neural network whose training data contains genre-specific melodies in symbolic representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
0
审稿时长
27 weeks
期刊介绍: Musicologica Brunensia is an international peer-reviewed scholarly journal publishing original articles in the field of musicology and related disciplines. The scope of the journal covers a wide range of topics, including not only a historical, but also a systematic area of musicology. The journal is not subject of any geographic restrictions. All submitted papers are double-blind peer review. The journal has been issued twice a year by Masaryk University (Faculty of Arts), Brno, Czech Republic, since 2009.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信