热问题的三次b样条数值解

IF 1.2 Q2 MATHEMATICS, APPLIED
D. Demir, N. Bildik
{"title":"热问题的三次b样条数值解","authors":"D. Demir, N. Bildik","doi":"10.5923/J.AM.20120204.06","DOIUrl":null,"url":null,"abstract":"This paper discusses solving one of the important equations in Physics; which is the one-dimensional heat equation. For that purpose, we use cubic B-spline fin ite elements within a Collocation method. The scheme of the method is presented and the stability analysis is investigated by considering Fourier stability method. On the other hand, a comparative study between the numerical and the analytic solution is illustrated by the figure and the tables. The results demonstrate the reliability and the efficiency of the method.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The Numerical Solution of Heat Problem Using Cubic B-Splines\",\"authors\":\"D. Demir, N. Bildik\",\"doi\":\"10.5923/J.AM.20120204.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses solving one of the important equations in Physics; which is the one-dimensional heat equation. For that purpose, we use cubic B-spline fin ite elements within a Collocation method. The scheme of the method is presented and the stability analysis is investigated by considering Fourier stability method. On the other hand, a comparative study between the numerical and the analytic solution is illustrated by the figure and the tables. The results demonstrate the reliability and the efficiency of the method.\",\"PeriodicalId\":49251,\"journal\":{\"name\":\"Journal of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2012-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5923/J.AM.20120204.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.AM.20120204.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

本文讨论了物理学中一个重要方程的解法;这是一维的热方程。为此,我们在搭配方法中使用三次b样条有限元。提出了该方法的方案,并考虑傅里叶稳定性法对其稳定性进行了分析。另一方面,数值解与解析解的对比研究用图和表来说明。结果表明了该方法的可靠性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Numerical Solution of Heat Problem Using Cubic B-Splines
This paper discusses solving one of the important equations in Physics; which is the one-dimensional heat equation. For that purpose, we use cubic B-spline fin ite elements within a Collocation method. The scheme of the method is presented and the stability analysis is investigated by considering Fourier stability method. On the other hand, a comparative study between the numerical and the analytic solution is illustrated by the figure and the tables. The results demonstrate the reliability and the efficiency of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Mathematics
Journal of Applied Mathematics MATHEMATICS, APPLIED-
CiteScore
2.70
自引率
0.00%
发文量
58
审稿时长
3.2 months
期刊介绍: Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信