生理学中一类奇异边值问题的非经典伪谱方法

IF 1.2 Q2 MATHEMATICS, APPLIED
A. Alipanah
{"title":"生理学中一类奇异边值问题的非经典伪谱方法","authors":"A. Alipanah","doi":"10.5923/J.AM.20120202.01","DOIUrl":null,"url":null,"abstract":"In this paper, nonclassical pseudospectral method is presented for solution of a classof nonlinear singular boundary value problems arising in physiology. Properties of non-classical pseudospectral method are presented. These properties are utilizeto reduce the computation of singular boundary value problems to system of equations. Numerical method is tested for its efficiency by considering two examples from physiology","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":"2 1","pages":"1-4"},"PeriodicalIF":1.2000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Nonclassical Pseudospectral Method for a Class of Singular Boundary Value Problems Arising in Physiology\",\"authors\":\"A. Alipanah\",\"doi\":\"10.5923/J.AM.20120202.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, nonclassical pseudospectral method is presented for solution of a classof nonlinear singular boundary value problems arising in physiology. Properties of non-classical pseudospectral method are presented. These properties are utilizeto reduce the computation of singular boundary value problems to system of equations. Numerical method is tested for its efficiency by considering two examples from physiology\",\"PeriodicalId\":49251,\"journal\":{\"name\":\"Journal of Applied Mathematics\",\"volume\":\"2 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2012-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5923/J.AM.20120202.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.AM.20120202.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9

摘要

本文采用非经典伪谱法求解一类生理学中的非线性奇异边值问题。给出了非经典伪谱方法的性质。利用这些性质将奇异边值问题的计算简化为方程组。通过两个生理学实例,验证了数值方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonclassical Pseudospectral Method for a Class of Singular Boundary Value Problems Arising in Physiology
In this paper, nonclassical pseudospectral method is presented for solution of a classof nonlinear singular boundary value problems arising in physiology. Properties of non-classical pseudospectral method are presented. These properties are utilizeto reduce the computation of singular boundary value problems to system of equations. Numerical method is tested for its efficiency by considering two examples from physiology
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Mathematics
Journal of Applied Mathematics MATHEMATICS, APPLIED-
CiteScore
2.70
自引率
0.00%
发文量
58
审稿时长
3.2 months
期刊介绍: Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信