(2+1)维Davey-Stewartson方程的两种积分方法

IF 1.2 Q2 MATHEMATICS, APPLIED
N. El-dabe, M. Moussa, Rehab M. El –Shiekh, H. A. Hamdy
{"title":"(2+1)维Davey-Stewartson方程的两种积分方法","authors":"N. El-dabe, M. Moussa, Rehab M. El –Shiekh, H. A. Hamdy","doi":"10.5923/J.AM.20120202.09","DOIUrl":null,"url":null,"abstract":"In this paper, we use two integral methods, the first integral method and the direct integral method to study (2+1)- dimensional Davey-Stewartson equation . The first integral method was used to construct travelling wave solutions, those solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. By using the direct integration method shock wave solution and Jacobi elliptic function solutions are obtained. By comparison be- tween the two methods, the direct integration is more impressive than the first integral method. The results obtained con- firm that the proposed methods are efficient techniques for analytic treatment of a wide variety of nonlinear systems of par- tial differential equations.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":"2 1","pages":"47-50"},"PeriodicalIF":1.2000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Integral Methods Applied to the (2+1) Dimensional Davey-Stewartson Equation\",\"authors\":\"N. El-dabe, M. Moussa, Rehab M. El –Shiekh, H. A. Hamdy\",\"doi\":\"10.5923/J.AM.20120202.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use two integral methods, the first integral method and the direct integral method to study (2+1)- dimensional Davey-Stewartson equation . The first integral method was used to construct travelling wave solutions, those solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. By using the direct integration method shock wave solution and Jacobi elliptic function solutions are obtained. By comparison be- tween the two methods, the direct integration is more impressive than the first integral method. The results obtained con- firm that the proposed methods are efficient techniques for analytic treatment of a wide variety of nonlinear systems of par- tial differential equations.\",\"PeriodicalId\":49251,\"journal\":{\"name\":\"Journal of Applied Mathematics\",\"volume\":\"2 1\",\"pages\":\"47-50\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2012-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5923/J.AM.20120202.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.AM.20120202.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文采用一阶积分法和直接积分法两种积分方法研究(2+1)维Davey-Stewartson方程。用第一种积分法构造行波解,用双曲函数、三角函数和有理函数表示行波解。采用直接积分法,得到了激波解和Jacobi椭圆函数解。通过对两种方法的比较,直接积分法比第一种积分法更令人印象深刻。结果表明,所提出的方法是解析处理各种非线性偏微分方程组的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two Integral Methods Applied to the (2+1) Dimensional Davey-Stewartson Equation
In this paper, we use two integral methods, the first integral method and the direct integral method to study (2+1)- dimensional Davey-Stewartson equation . The first integral method was used to construct travelling wave solutions, those solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. By using the direct integration method shock wave solution and Jacobi elliptic function solutions are obtained. By comparison be- tween the two methods, the direct integration is more impressive than the first integral method. The results obtained con- firm that the proposed methods are efficient techniques for analytic treatment of a wide variety of nonlinear systems of par- tial differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Mathematics
Journal of Applied Mathematics MATHEMATICS, APPLIED-
CiteScore
2.70
自引率
0.00%
发文量
58
审稿时长
3.2 months
期刊介绍: Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信