{"title":"镰状细胞病红细胞膜力学行为分析","authors":"D. Fisseha, V. K. Katiyar","doi":"10.5923/J.AM.20120202.08","DOIUrl":null,"url":null,"abstract":"Sickle cell disease (SCD) is a disease of abnormal rheology. The rheological properties of normal erythrocytes appear to be largely determined by those of the red cell membrane. In SCD, the intracellular polymerization of sickle he- moglobin upon deoxygnation leads to marked increase in intracellular viscosity and elastic stiffness and also having indirect effects on cell membrane .To examine mathematically, the abnormal cell rheology behavior due to polymerization process and that due membrane abnormalities , we mechanically modeled the whole cell deformability as viscoelastic solid and proposed a Voigt-model of nonlinear viscoelastic solid constitutive relation as \" mixture''of an elastic and viscous dissipative parts, with parameters of elastic and viscous moduli. The elastic part used to express stress-strain relations via strain energy function of the material and the viscous part derivation depends on strain - rate of deformation. The combination of both constitutive expressions is used to predict the viscoelastic properties of normal and sickle erythrocyte. Furthermore, sickle hemoglobin polymerization also leads to alter the osmotic behavior of the cell and to investigate such osmotic effect; we employ the van't Hoff law of osmotic pressure versus volume relation. The analysis of both formulations presented well the abnormal rheological /mechanical characterization of sickle erythrocyte membrane as we understood and concluded from our results.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Analysis of Mechanical Behavior of Red Cell Membrane in Sickle Cell Disease\",\"authors\":\"D. Fisseha, V. K. Katiyar\",\"doi\":\"10.5923/J.AM.20120202.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sickle cell disease (SCD) is a disease of abnormal rheology. The rheological properties of normal erythrocytes appear to be largely determined by those of the red cell membrane. In SCD, the intracellular polymerization of sickle he- moglobin upon deoxygnation leads to marked increase in intracellular viscosity and elastic stiffness and also having indirect effects on cell membrane .To examine mathematically, the abnormal cell rheology behavior due to polymerization process and that due membrane abnormalities , we mechanically modeled the whole cell deformability as viscoelastic solid and proposed a Voigt-model of nonlinear viscoelastic solid constitutive relation as \\\" mixture''of an elastic and viscous dissipative parts, with parameters of elastic and viscous moduli. The elastic part used to express stress-strain relations via strain energy function of the material and the viscous part derivation depends on strain - rate of deformation. The combination of both constitutive expressions is used to predict the viscoelastic properties of normal and sickle erythrocyte. Furthermore, sickle hemoglobin polymerization also leads to alter the osmotic behavior of the cell and to investigate such osmotic effect; we employ the van't Hoff law of osmotic pressure versus volume relation. The analysis of both formulations presented well the abnormal rheological /mechanical characterization of sickle erythrocyte membrane as we understood and concluded from our results.\",\"PeriodicalId\":49251,\"journal\":{\"name\":\"Journal of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2012-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5923/J.AM.20120202.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.AM.20120202.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Analysis of Mechanical Behavior of Red Cell Membrane in Sickle Cell Disease
Sickle cell disease (SCD) is a disease of abnormal rheology. The rheological properties of normal erythrocytes appear to be largely determined by those of the red cell membrane. In SCD, the intracellular polymerization of sickle he- moglobin upon deoxygnation leads to marked increase in intracellular viscosity and elastic stiffness and also having indirect effects on cell membrane .To examine mathematically, the abnormal cell rheology behavior due to polymerization process and that due membrane abnormalities , we mechanically modeled the whole cell deformability as viscoelastic solid and proposed a Voigt-model of nonlinear viscoelastic solid constitutive relation as " mixture''of an elastic and viscous dissipative parts, with parameters of elastic and viscous moduli. The elastic part used to express stress-strain relations via strain energy function of the material and the viscous part derivation depends on strain - rate of deformation. The combination of both constitutive expressions is used to predict the viscoelastic properties of normal and sickle erythrocyte. Furthermore, sickle hemoglobin polymerization also leads to alter the osmotic behavior of the cell and to investigate such osmotic effect; we employ the van't Hoff law of osmotic pressure versus volume relation. The analysis of both formulations presented well the abnormal rheological /mechanical characterization of sickle erythrocyte membrane as we understood and concluded from our results.
期刊介绍:
Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.