余弦函数法求解BBM和MRLW方程的孤子

IF 1.2 Q2 MATHEMATICS, APPLIED
R. Arora, Anoop Kumar
{"title":"余弦函数法求解BBM和MRLW方程的孤子","authors":"R. Arora, Anoop Kumar","doi":"10.5923/J.AM.20110102.09","DOIUrl":null,"url":null,"abstract":"In this paper, we obtained a traveling wave solution by using cosine-function algorithm for nonlinear partial differential equations. Here, the method is used to obtain the exact solutions for two different types of nonlinear partial dif- ferential equations such as, Benjamin-Bona-Mahony (BBM) equation and Modified Regularized Long Wave (MRLW) equation which are the important soliton equations.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":"1 1","pages":"59-61"},"PeriodicalIF":1.2000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Soliton Solution for the BBM and MRLW Equations by Cosine-function Method\",\"authors\":\"R. Arora, Anoop Kumar\",\"doi\":\"10.5923/J.AM.20110102.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we obtained a traveling wave solution by using cosine-function algorithm for nonlinear partial differential equations. Here, the method is used to obtain the exact solutions for two different types of nonlinear partial dif- ferential equations such as, Benjamin-Bona-Mahony (BBM) equation and Modified Regularized Long Wave (MRLW) equation which are the important soliton equations.\",\"PeriodicalId\":49251,\"journal\":{\"name\":\"Journal of Applied Mathematics\",\"volume\":\"1 1\",\"pages\":\"59-61\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2012-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5923/J.AM.20110102.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.AM.20110102.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 17

摘要

本文利用余弦函数算法得到了非线性偏微分方程的行波解。本文将该方法应用于两种不同类型的非线性偏微分方程的精确解,即Benjamin-Bona-Mahony (BBM)方程和修正正则长波(MRLW)方程,它们是重要的孤子方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soliton Solution for the BBM and MRLW Equations by Cosine-function Method
In this paper, we obtained a traveling wave solution by using cosine-function algorithm for nonlinear partial differential equations. Here, the method is used to obtain the exact solutions for two different types of nonlinear partial dif- ferential equations such as, Benjamin-Bona-Mahony (BBM) equation and Modified Regularized Long Wave (MRLW) equation which are the important soliton equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Mathematics
Journal of Applied Mathematics MATHEMATICS, APPLIED-
CiteScore
2.70
自引率
0.00%
发文量
58
审稿时长
3.2 months
期刊介绍: Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信