R. E. Putri, N. R. Mubarik, L. Ambarsari, A. Wahyudi
{"title":"枯草芽孢杆菌W3.15产生的抗真菌物质抑制尖孢镰刀菌并引发细胞损伤","authors":"R. E. Putri, N. R. Mubarik, L. Ambarsari, A. Wahyudi","doi":"10.4308/hjb.30.5.843-854","DOIUrl":null,"url":null,"abstract":"Soybean Fusarium wilt and root rot disease caused by a necrotrophic ascomycete pathogen, F. oxysporum, triggered severe damage to the plant tissues and organs and impacted heavy losses. Biocontrol agents, Bacillus subtilis, were commonly used to produce a broad spectrum of antifungal substances and were gradually used in biocontrol studies for plant disease management. Investigation and determination of the inhibiting mechanism of antifungal substance produced by B. subtilis on F. oxysporum should be done to protect the soybean plant. This study revealed that basal nutrient broth (NB) gives the best antifungal activity. The stationary phase of the bacterial growth curve was obtained on two days of cultivation and showed the maximum antifungal activity against F. oxysporum. Ethyl acetate (EA) extraction of bacterial supernatant generated crude EA extract, which showed half inhibition (IC50) at 306.42 µg/ml obtained from the dose-response regression curve. Post-treatment mycelia of F. oxysporum with bacterial extract were demonstrated as hyphal deformation followed by malondialdehyde (MDA) accumulation. Furthermore, cellular leakage on fungal cells that may be triggered by antifungal compounds from strain W3.15 occurred. Last, the related antifungal compounds were predicted to be epicatechin and benzophenone from the LC-MS/MS analysis of crude EA extract. Accordingly, the biocontrol agent B. subtilis strain W3.15 promises a strong potency for biofungicide development.","PeriodicalId":12927,"journal":{"name":"HAYATI Journal of Biosciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antifungal Substances Produced by B. subtilis Strain W3.15 Inhibit the Fusarium oxysporum and Trigger Cellular Damage\",\"authors\":\"R. E. Putri, N. R. Mubarik, L. Ambarsari, A. Wahyudi\",\"doi\":\"10.4308/hjb.30.5.843-854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soybean Fusarium wilt and root rot disease caused by a necrotrophic ascomycete pathogen, F. oxysporum, triggered severe damage to the plant tissues and organs and impacted heavy losses. Biocontrol agents, Bacillus subtilis, were commonly used to produce a broad spectrum of antifungal substances and were gradually used in biocontrol studies for plant disease management. Investigation and determination of the inhibiting mechanism of antifungal substance produced by B. subtilis on F. oxysporum should be done to protect the soybean plant. This study revealed that basal nutrient broth (NB) gives the best antifungal activity. The stationary phase of the bacterial growth curve was obtained on two days of cultivation and showed the maximum antifungal activity against F. oxysporum. Ethyl acetate (EA) extraction of bacterial supernatant generated crude EA extract, which showed half inhibition (IC50) at 306.42 µg/ml obtained from the dose-response regression curve. Post-treatment mycelia of F. oxysporum with bacterial extract were demonstrated as hyphal deformation followed by malondialdehyde (MDA) accumulation. Furthermore, cellular leakage on fungal cells that may be triggered by antifungal compounds from strain W3.15 occurred. Last, the related antifungal compounds were predicted to be epicatechin and benzophenone from the LC-MS/MS analysis of crude EA extract. Accordingly, the biocontrol agent B. subtilis strain W3.15 promises a strong potency for biofungicide development.\",\"PeriodicalId\":12927,\"journal\":{\"name\":\"HAYATI Journal of Biosciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HAYATI Journal of Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4308/hjb.30.5.843-854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HAYATI Journal of Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4308/hjb.30.5.843-854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Antifungal Substances Produced by B. subtilis Strain W3.15 Inhibit the Fusarium oxysporum and Trigger Cellular Damage
Soybean Fusarium wilt and root rot disease caused by a necrotrophic ascomycete pathogen, F. oxysporum, triggered severe damage to the plant tissues and organs and impacted heavy losses. Biocontrol agents, Bacillus subtilis, were commonly used to produce a broad spectrum of antifungal substances and were gradually used in biocontrol studies for plant disease management. Investigation and determination of the inhibiting mechanism of antifungal substance produced by B. subtilis on F. oxysporum should be done to protect the soybean plant. This study revealed that basal nutrient broth (NB) gives the best antifungal activity. The stationary phase of the bacterial growth curve was obtained on two days of cultivation and showed the maximum antifungal activity against F. oxysporum. Ethyl acetate (EA) extraction of bacterial supernatant generated crude EA extract, which showed half inhibition (IC50) at 306.42 µg/ml obtained from the dose-response regression curve. Post-treatment mycelia of F. oxysporum with bacterial extract were demonstrated as hyphal deformation followed by malondialdehyde (MDA) accumulation. Furthermore, cellular leakage on fungal cells that may be triggered by antifungal compounds from strain W3.15 occurred. Last, the related antifungal compounds were predicted to be epicatechin and benzophenone from the LC-MS/MS analysis of crude EA extract. Accordingly, the biocontrol agent B. subtilis strain W3.15 promises a strong potency for biofungicide development.
期刊介绍:
HAYATI Journal of Biosciences (HAYATI J Biosci) is an international peer-reviewed and open access journal that publishes significant and important research from all area of biosciences fields such as biodiversity, biosystematics, ecology, physiology, behavior, genetics and biotechnology. All life forms, ranging from microbes, fungi, plants, animals, and human, including virus, are covered by HAYATI J Biosci. HAYATI J Biosci published by Department of Biology, Bogor Agricultural University, Indonesia and the Indonesian Society for Biology. We accept submission from all over the world. Our Editorial Board members are prominent and active international researchers in biosciences fields who ensure efficient, fair, and constructive peer-review process. All accepted articles will be published on payment of an article-processing charge, and will be freely available to all readers with worldwide visibility and coverage.