嗜中性ink代数的直接积

Q1 Mathematics
M. Kaviyarasu, K. Indhira, V. M. Chandrasekaran
{"title":"嗜中性ink代数的直接积","authors":"M. Kaviyarasu, K. Indhira, V. M. Chandrasekaran","doi":"10.5281/ZENODO.4300503","DOIUrl":null,"url":null,"abstract":"In “this paper, first we define the notion direct product of neutrosophic sets in INK-algebras, neutrosophic set, neutrosophic INK-ideals, neutrosophic closed INK-ideals and direct product of neutrosophic INK-ideals in INK-algebras. We prove some theorems which show that there is some relation between these notions. Finally, we define the INK-subalgebra of INK-algebra and then we give related theorem about the relationship between their Images and direct product of neutrosophic INK-ideals.","PeriodicalId":46897,"journal":{"name":"Neutrosophic Sets and Systems","volume":"38 1","pages":"227-234"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct product of Neutrosophic INK-Algebras\",\"authors\":\"M. Kaviyarasu, K. Indhira, V. M. Chandrasekaran\",\"doi\":\"10.5281/ZENODO.4300503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In “this paper, first we define the notion direct product of neutrosophic sets in INK-algebras, neutrosophic set, neutrosophic INK-ideals, neutrosophic closed INK-ideals and direct product of neutrosophic INK-ideals in INK-algebras. We prove some theorems which show that there is some relation between these notions. Finally, we define the INK-subalgebra of INK-algebra and then we give related theorem about the relationship between their Images and direct product of neutrosophic INK-ideals.\",\"PeriodicalId\":46897,\"journal\":{\"name\":\"Neutrosophic Sets and Systems\",\"volume\":\"38 1\",\"pages\":\"227-234\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neutrosophic Sets and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.4300503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neutrosophic Sets and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.4300503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文首先定义了ink -代数中嗜中性集的直积、嗜中性集、嗜中性ink -理想、嗜中性闭ink -理想和嗜中性ink -理想的直积的概念。我们证明了一些定理,这些定理表明这些概念之间有某种关系。最后,我们定义了ink -代数中的ink -子代数,并给出了它们的象与嗜中性ink -理想的直积之间关系的相关定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct product of Neutrosophic INK-Algebras
In “this paper, first we define the notion direct product of neutrosophic sets in INK-algebras, neutrosophic set, neutrosophic INK-ideals, neutrosophic closed INK-ideals and direct product of neutrosophic INK-ideals in INK-algebras. We prove some theorems which show that there is some relation between these notions. Finally, we define the INK-subalgebra of INK-algebra and then we give related theorem about the relationship between their Images and direct product of neutrosophic INK-ideals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neutrosophic Sets and Systems
Neutrosophic Sets and Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊介绍: Neutrosophic Sets and Systems (NSS) is an academic journal, published bimonthly online and on paper, that has been created for publications of advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics etc. and their applications in any field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信