由二元关系定义的嗜中性超组合结构

Q1 Mathematics
A. Agboola, S. Akinleye
{"title":"由二元关系定义的嗜中性超组合结构","authors":"A. Agboola, S. Akinleye","doi":"10.5281/ZENODO.22589","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to study neutrosophic hypercompositional structures ( ) H I  arising from the hypercompositions derived from the binary relations τ on a neutrosophic set ( ) H I . We give the characterizations of τ that make ( ) H I  hypergroupoids,quasihypergroups, semihypergroups, neutrosophic hypergroupoids, neutrosophic quasihypergroups, neutrosophic semihypergroups and neutrosophic hypergroups.","PeriodicalId":46897,"journal":{"name":"Neutrosophic Sets and Systems","volume":"3 1","pages":"29-36"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neutrosophic Hypercompositional Structures defined by Binary Relations\",\"authors\":\"A. Agboola, S. Akinleye\",\"doi\":\"10.5281/ZENODO.22589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to study neutrosophic hypercompositional structures ( ) H I  arising from the hypercompositions derived from the binary relations τ on a neutrosophic set ( ) H I . We give the characterizations of τ that make ( ) H I  hypergroupoids,quasihypergroups, semihypergroups, neutrosophic hypergroupoids, neutrosophic quasihypergroups, neutrosophic semihypergroups and neutrosophic hypergroups.\",\"PeriodicalId\":46897,\"journal\":{\"name\":\"Neutrosophic Sets and Systems\",\"volume\":\"3 1\",\"pages\":\"29-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neutrosophic Sets and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.22589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neutrosophic Sets and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.22589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

本文的目的是研究中性粒细胞超组合结构()H I由中性粒细胞集合()H I上二元关系τ衍生的超组合所产生的中性粒细胞超组合结构。我们给出了构成()H I超类群、准超群、半超群、嗜中性超类群、嗜中性准超群、嗜中性半超群和嗜中性超群的τ的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neutrosophic Hypercompositional Structures defined by Binary Relations
The objective of this paper is to study neutrosophic hypercompositional structures ( ) H I  arising from the hypercompositions derived from the binary relations τ on a neutrosophic set ( ) H I . We give the characterizations of τ that make ( ) H I  hypergroupoids,quasihypergroups, semihypergroups, neutrosophic hypergroupoids, neutrosophic quasihypergroups, neutrosophic semihypergroups and neutrosophic hypergroups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neutrosophic Sets and Systems
Neutrosophic Sets and Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊介绍: Neutrosophic Sets and Systems (NSS) is an academic journal, published bimonthly online and on paper, that has been created for publications of advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics etc. and their applications in any field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信