Johan Ankarklev, D. Hjelmqvist, Pierre-Yves Mantel
{"title":"揭示红细胞来源的细胞外囊泡在疟疾中的作用:从免疫调节到细胞通讯","authors":"Johan Ankarklev, D. Hjelmqvist, Pierre-Yves Mantel","doi":"10.5772/58596","DOIUrl":null,"url":null,"abstract":"Investigation of the involvement of extracellular vesicles (EVs) in parasite biology has burgeoned in recent years. Human infecting protozoan parasites, such as Trypanosoma cruzi, Lesihmania sp. and Trichomonas vaginalis, have all demonstrated the utilization of EVs as virulence factors in order to activate or hamper host immunity. Novel findings have provided evidence that the deployment of EVs by Plasmodium sp. has a major impact in disease outcomes and serves as an integral part in controlling stage switching in its life cycle. Clinical studies have highlighted elevated levels of EVs in patients with severe malaria disease and EVs have been linked to increased sequestration of infected red blood cells to the endothelium, causing obstruction of blood flow. It has also been found that EVs produced during malaria disease activate innate immunity. Intriguingly, recent discoveries indicate that Plasmodium sp. “highjack” the erythrocyte microvesiculation system in order to cross-communicate. Both the transfer of DNA and parasite density regulation has been suggested as key mechanisms of EVs in malaria biology.","PeriodicalId":37524,"journal":{"name":"Journal of Circulating Biomarkers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/58596","citationCount":"8","resultStr":"{\"title\":\"Uncovering the Role of Erythrocyte-Derived Extracellular Vesicles in Malaria: From Immune Regulation to Cell Communication\",\"authors\":\"Johan Ankarklev, D. Hjelmqvist, Pierre-Yves Mantel\",\"doi\":\"10.5772/58596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investigation of the involvement of extracellular vesicles (EVs) in parasite biology has burgeoned in recent years. Human infecting protozoan parasites, such as Trypanosoma cruzi, Lesihmania sp. and Trichomonas vaginalis, have all demonstrated the utilization of EVs as virulence factors in order to activate or hamper host immunity. Novel findings have provided evidence that the deployment of EVs by Plasmodium sp. has a major impact in disease outcomes and serves as an integral part in controlling stage switching in its life cycle. Clinical studies have highlighted elevated levels of EVs in patients with severe malaria disease and EVs have been linked to increased sequestration of infected red blood cells to the endothelium, causing obstruction of blood flow. It has also been found that EVs produced during malaria disease activate innate immunity. Intriguingly, recent discoveries indicate that Plasmodium sp. “highjack” the erythrocyte microvesiculation system in order to cross-communicate. Both the transfer of DNA and parasite density regulation has been suggested as key mechanisms of EVs in malaria biology.\",\"PeriodicalId\":37524,\"journal\":{\"name\":\"Journal of Circulating Biomarkers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5772/58596\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Circulating Biomarkers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/58596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circulating Biomarkers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/58596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Uncovering the Role of Erythrocyte-Derived Extracellular Vesicles in Malaria: From Immune Regulation to Cell Communication
Investigation of the involvement of extracellular vesicles (EVs) in parasite biology has burgeoned in recent years. Human infecting protozoan parasites, such as Trypanosoma cruzi, Lesihmania sp. and Trichomonas vaginalis, have all demonstrated the utilization of EVs as virulence factors in order to activate or hamper host immunity. Novel findings have provided evidence that the deployment of EVs by Plasmodium sp. has a major impact in disease outcomes and serves as an integral part in controlling stage switching in its life cycle. Clinical studies have highlighted elevated levels of EVs in patients with severe malaria disease and EVs have been linked to increased sequestration of infected red blood cells to the endothelium, causing obstruction of blood flow. It has also been found that EVs produced during malaria disease activate innate immunity. Intriguingly, recent discoveries indicate that Plasmodium sp. “highjack” the erythrocyte microvesiculation system in order to cross-communicate. Both the transfer of DNA and parasite density regulation has been suggested as key mechanisms of EVs in malaria biology.
期刊介绍:
Journal of Circulating Biomarkers is an international, peer-reviewed, open access scientific journal focusing on all aspects of the rapidly growing field of circulating blood-based biomarkers and diagnostics using circulating protein and lipid markers, circulating tumor cells (CTC), circulating cell-free DNA (cfDNA) and extracellular vesicles, including exosomes, microvesicles, microparticles, ectosomes and apoptotic bodies. The journal publishes high-impact articles that deal with all fields related to circulating biomarkers and diagnostics, ranging from basic science to translational and clinical applications. Papers from a wide variety of disciplines are welcome; interdisciplinary studies are especially suitable for this journal. Included within the scope are a broad array of specialties including (but not limited to) cancer, immunology, neurology, metabolic diseases, cardiovascular medicine, regenerative medicine, nosology, physiology, pathology, technological applications in diagnostics, therapeutics, vaccine, drug delivery, regenerative medicine, drug development and clinical trials. The journal also hosts reviews, perspectives and news on specific topics.