{"title":"MET激活导致头颈癌患者对西妥昔单抗产生耐药性","authors":"J. Baselga","doi":"10.4172/1745-7580-C1-014","DOIUrl":null,"url":null,"abstract":"Methods: Genomic, transcriptomics, and proteomics profiling was done on cetuximab-sensitive (CetuxSen) and resistant tumor (CetuxRes) lesions obtained from a patient who had an exceptionally good response to cetuximab monotherapy. Immunohistochemisty, FISH, and qPCR were applied to confirm MET localization, copy number, and expression, respectively. IHC staining and analysis of MET expression were done on 20-cetuximab treated patients. Biochemical studies in vitro were conducted to uncover the molecular mechanism of resistance.","PeriodicalId":73347,"journal":{"name":"Immunome research","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MET activation drives resistance to cetuximab in head and neck cancer\",\"authors\":\"J. Baselga\",\"doi\":\"10.4172/1745-7580-C1-014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methods: Genomic, transcriptomics, and proteomics profiling was done on cetuximab-sensitive (CetuxSen) and resistant tumor (CetuxRes) lesions obtained from a patient who had an exceptionally good response to cetuximab monotherapy. Immunohistochemisty, FISH, and qPCR were applied to confirm MET localization, copy number, and expression, respectively. IHC staining and analysis of MET expression were done on 20-cetuximab treated patients. Biochemical studies in vitro were conducted to uncover the molecular mechanism of resistance.\",\"PeriodicalId\":73347,\"journal\":{\"name\":\"Immunome research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunome research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/1745-7580-C1-014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunome research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/1745-7580-C1-014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MET activation drives resistance to cetuximab in head and neck cancer
Methods: Genomic, transcriptomics, and proteomics profiling was done on cetuximab-sensitive (CetuxSen) and resistant tumor (CetuxRes) lesions obtained from a patient who had an exceptionally good response to cetuximab monotherapy. Immunohistochemisty, FISH, and qPCR were applied to confirm MET localization, copy number, and expression, respectively. IHC staining and analysis of MET expression were done on 20-cetuximab treated patients. Biochemical studies in vitro were conducted to uncover the molecular mechanism of resistance.