{"title":"狄拉克三角的阶导数在超锥上的卷积积","authors":"M. A. Aguirre","doi":"10.5377/NEXO.V21I2.876","DOIUrl":null,"url":null,"abstract":"In this paper we give a sense to distributional convolution products of k P ∗ l P, k P− ∗ l P−, 1k P ∗ 1l P and 2k P ∗ 2l P. The first section, we give a sense to products of k P ∗ l P and k P− ∗ l P− for odd n , as well as for even n if k n 2 − 1 and l n 2 − 1. In the second section, we give a sense to products k P ∗ l P, k P− ∗ l P−, 1 k P ∗ 1 l P and 2 k P ∗ 2 l P under conditions n even, k ≥ n 2 − 1 and l ≥ n 2 − 1.","PeriodicalId":40344,"journal":{"name":"Nexo Revista Cientifica","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2012-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"El producto de convolución de la derivada de orden de la delta de Dirac en un hipercono\",\"authors\":\"M. A. Aguirre\",\"doi\":\"10.5377/NEXO.V21I2.876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we give a sense to distributional convolution products of k P ∗ l P, k P− ∗ l P−, 1k P ∗ 1l P and 2k P ∗ 2l P. The first section, we give a sense to products of k P ∗ l P and k P− ∗ l P− for odd n , as well as for even n if k n 2 − 1 and l n 2 − 1. In the second section, we give a sense to products k P ∗ l P, k P− ∗ l P−, 1 k P ∗ 1 l P and 2 k P ∗ 2 l P under conditions n even, k ≥ n 2 − 1 and l ≥ n 2 − 1.\",\"PeriodicalId\":40344,\"journal\":{\"name\":\"Nexo Revista Cientifica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2012-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nexo Revista Cientifica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5377/NEXO.V21I2.876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nexo Revista Cientifica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5377/NEXO.V21I2.876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
In this paper we give a sense to distributional convolution products of k P ∗ l P, k P− ∗ l P−, 1k P ∗ 1l P and 2k P ∗ 2l P. The first section, we give a sense to products of k P ∗ l P and k P− ∗ l P− for odd n , as well as for even n if k n 2 − 1 and l n 2 − 1. In the second section, we give a sense to products k P ∗ l P, k P− ∗ l P−, 1 k P ∗ 1 l P and 2 k P ∗ 2 l P under conditions n even, k ≥ n 2 − 1 and l ≥ n 2 − 1.
El producto de convolución de la derivada de orden de la delta de Dirac en un hipercono
In this paper we give a sense to distributional convolution products of k P ∗ l P, k P− ∗ l P−, 1k P ∗ 1l P and 2k P ∗ 2l P. The first section, we give a sense to products of k P ∗ l P and k P− ∗ l P− for odd n , as well as for even n if k n 2 − 1 and l n 2 − 1. In the second section, we give a sense to products k P ∗ l P, k P− ∗ l P−, 1 k P ∗ 1 l P and 2 k P ∗ 2 l P under conditions n even, k ≥ n 2 − 1 and l ≥ n 2 − 1.