物联网设备网络异常安全分析新模型

Q1 Social Sciences
Mohammad Al Rawajbeh, Wael Alzyadat, K. Kaabneh, Suha Afaneh, Dima Farhan Alrwashdeh, Hamdah Samih Albayaydah, ssam Hamad AlHadid
{"title":"物联网设备网络异常安全分析新模型","authors":"Mohammad Al Rawajbeh, Wael Alzyadat, K. Kaabneh, Suha Afaneh, Dima Farhan Alrwashdeh, Hamdah Samih Albayaydah, ssam Hamad AlHadid","doi":"10.5267/j.ijdns.2023.5.001","DOIUrl":null,"url":null,"abstract":"In the era of IoT gaining traction, attacks on IoT-enabled devices are the order of the day that emanates the need for more protected IoT networks. IoT's key feature deals with massive amounts of data sensed by numerous heterogeneous IoT devices. Numerous machine learning techniques are used to collect data from different types of sensors on the objects and transform them into information relevant to the application. Furthermore, business and data analytics algorithms help in event prediction based on observed behavior and information. Routing information securely over the internet with limited resources in IoT applications is a key problem. The study proposes a model for detecting network anomalies in IoT devices to enhance the security of the devices. The study employed the IoT Botnet dataset, and K-fold cross-validation tests were used for validating the values of evaluation metrics. The average values of Accuracy, Precision, Recall, and F Score was 97.4.","PeriodicalId":36543,"journal":{"name":"International Journal of Data and Network Science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new model for security analysis of network anomalies for IoT devices\",\"authors\":\"Mohammad Al Rawajbeh, Wael Alzyadat, K. Kaabneh, Suha Afaneh, Dima Farhan Alrwashdeh, Hamdah Samih Albayaydah, ssam Hamad AlHadid\",\"doi\":\"10.5267/j.ijdns.2023.5.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the era of IoT gaining traction, attacks on IoT-enabled devices are the order of the day that emanates the need for more protected IoT networks. IoT's key feature deals with massive amounts of data sensed by numerous heterogeneous IoT devices. Numerous machine learning techniques are used to collect data from different types of sensors on the objects and transform them into information relevant to the application. Furthermore, business and data analytics algorithms help in event prediction based on observed behavior and information. Routing information securely over the internet with limited resources in IoT applications is a key problem. The study proposes a model for detecting network anomalies in IoT devices to enhance the security of the devices. The study employed the IoT Botnet dataset, and K-fold cross-validation tests were used for validating the values of evaluation metrics. The average values of Accuracy, Precision, Recall, and F Score was 97.4.\",\"PeriodicalId\":36543,\"journal\":{\"name\":\"International Journal of Data and Network Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data and Network Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5267/j.ijdns.2023.5.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data and Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.ijdns.2023.5.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1

摘要

在物联网获得牵引力的时代,对支持物联网的设备的攻击是当今的秩序,这引发了对更多受保护的物联网网络的需求。物联网的主要功能是处理由众多异构物联网设备感知的大量数据。许多机器学习技术用于从物体上不同类型的传感器收集数据,并将其转换为与应用相关的信息。此外,业务和数据分析算法有助于基于观察到的行为和信息进行事件预测。在物联网应用中,利用有限的资源在互联网上安全地路由信息是一个关键问题。该研究提出了一种检测物联网设备网络异常的模型,以增强设备的安全性。该研究采用物联网僵尸网络数据集,并使用K-fold交叉验证测试来验证评估指标的值。正确率、精密度、召回率和F得分的平均值为97.4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new model for security analysis of network anomalies for IoT devices
In the era of IoT gaining traction, attacks on IoT-enabled devices are the order of the day that emanates the need for more protected IoT networks. IoT's key feature deals with massive amounts of data sensed by numerous heterogeneous IoT devices. Numerous machine learning techniques are used to collect data from different types of sensors on the objects and transform them into information relevant to the application. Furthermore, business and data analytics algorithms help in event prediction based on observed behavior and information. Routing information securely over the internet with limited resources in IoT applications is a key problem. The study proposes a model for detecting network anomalies in IoT devices to enhance the security of the devices. The study employed the IoT Botnet dataset, and K-fold cross-validation tests were used for validating the values of evaluation metrics. The average values of Accuracy, Precision, Recall, and F Score was 97.4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
163
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信