{"title":"采用滤袋法同时采集大气中的 NO、NO2、HONO 和 HNO3","authors":"Takumi Oda, Yusuke Fujii, Norimichi Takenaka","doi":"10.5572/ajae.2022.006","DOIUrl":null,"url":null,"abstract":"<div><p>A simultaneous sampling method for gaseous nitric oxide (NO), nitrogen dioxide (NO<sub>2</sub>), nitrous acid (HONO) and nitric acid (HNO<sub>3</sub>) was developed by a filter-pack sampling method to measure these concentrations at low cost in areas where monitoring stations are not available or at multiple locations. HONO and HNO<sub>3</sub> gases were collected with a conventional filter-pack method. NO<sub>2</sub> was collected with a guaiacol-impregnated filter at a flow rate of 0.3 dm<sup>3</sup> min<sup>−1</sup>. NO was collected using guaiacol by oxidizing it to NO<sub>2</sub> with potassium permanganate at a 0.3 dm<sup>3</sup> min<sup>−1</sup> flow rate. The optimum concentration of KMnO<sub>4</sub> in the immersion solution for the impregnated filter was 0.16 mol dm<sup>−3</sup> (in 0.51 mol dm<sup>−3</sup> H<sub>2</sub>SO<sub>4</sub>). The concentrations of NO and NO<sub>2</sub> measured by the filter-pack method were in good agreement with those measured by the chemiluminescence method. It was calculated that 60 ppb NO could be oxidized to NO<sub>2</sub> with the KMnO<sub>4</sub>-impregnated filter for 183 hours at a 0.3 dm<sup>3</sup> min<sup>−1</sup> flow rate. This is enough time for sampling in a real environment. This method was applied to measure NO, NO<sub>2</sub>, HONO and HNO<sub>3</sub> in the atmosphere at three points around Osaka, Japan.</p></div>","PeriodicalId":45358,"journal":{"name":"Asian Journal of Atmospheric Environment","volume":"16 2","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.5572/ajae.2022.006.pdf","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Sampling of NO, NO2, HONO and HNO3 in the Atmosphere by a Filter-Pack Method\",\"authors\":\"Takumi Oda, Yusuke Fujii, Norimichi Takenaka\",\"doi\":\"10.5572/ajae.2022.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A simultaneous sampling method for gaseous nitric oxide (NO), nitrogen dioxide (NO<sub>2</sub>), nitrous acid (HONO) and nitric acid (HNO<sub>3</sub>) was developed by a filter-pack sampling method to measure these concentrations at low cost in areas where monitoring stations are not available or at multiple locations. HONO and HNO<sub>3</sub> gases were collected with a conventional filter-pack method. NO<sub>2</sub> was collected with a guaiacol-impregnated filter at a flow rate of 0.3 dm<sup>3</sup> min<sup>−1</sup>. NO was collected using guaiacol by oxidizing it to NO<sub>2</sub> with potassium permanganate at a 0.3 dm<sup>3</sup> min<sup>−1</sup> flow rate. The optimum concentration of KMnO<sub>4</sub> in the immersion solution for the impregnated filter was 0.16 mol dm<sup>−3</sup> (in 0.51 mol dm<sup>−3</sup> H<sub>2</sub>SO<sub>4</sub>). The concentrations of NO and NO<sub>2</sub> measured by the filter-pack method were in good agreement with those measured by the chemiluminescence method. It was calculated that 60 ppb NO could be oxidized to NO<sub>2</sub> with the KMnO<sub>4</sub>-impregnated filter for 183 hours at a 0.3 dm<sup>3</sup> min<sup>−1</sup> flow rate. This is enough time for sampling in a real environment. This method was applied to measure NO, NO<sub>2</sub>, HONO and HNO<sub>3</sub> in the atmosphere at three points around Osaka, Japan.</p></div>\",\"PeriodicalId\":45358,\"journal\":{\"name\":\"Asian Journal of Atmospheric Environment\",\"volume\":\"16 2\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.5572/ajae.2022.006.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Atmospheric Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.5572/ajae.2022.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Atmospheric Environment","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.5572/ajae.2022.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Simultaneous Sampling of NO, NO2, HONO and HNO3 in the Atmosphere by a Filter-Pack Method
A simultaneous sampling method for gaseous nitric oxide (NO), nitrogen dioxide (NO2), nitrous acid (HONO) and nitric acid (HNO3) was developed by a filter-pack sampling method to measure these concentrations at low cost in areas where monitoring stations are not available or at multiple locations. HONO and HNO3 gases were collected with a conventional filter-pack method. NO2 was collected with a guaiacol-impregnated filter at a flow rate of 0.3 dm3 min−1. NO was collected using guaiacol by oxidizing it to NO2 with potassium permanganate at a 0.3 dm3 min−1 flow rate. The optimum concentration of KMnO4 in the immersion solution for the impregnated filter was 0.16 mol dm−3 (in 0.51 mol dm−3 H2SO4). The concentrations of NO and NO2 measured by the filter-pack method were in good agreement with those measured by the chemiluminescence method. It was calculated that 60 ppb NO could be oxidized to NO2 with the KMnO4-impregnated filter for 183 hours at a 0.3 dm3 min−1 flow rate. This is enough time for sampling in a real environment. This method was applied to measure NO, NO2, HONO and HNO3 in the atmosphere at three points around Osaka, Japan.