{"title":"白令海鲍尔斯岭东南的阿留申海沟的地形,在北太平洋地质发展的背景下","authors":"Polina Lemenkova","doi":"10.5200/baltica.2021.1.3","DOIUrl":null,"url":null,"abstract":"The research is focused on the topographic modelling and mapping of the Aleutian Trench. The study area is situated in the Bering Sea, a marginal sea located northernmost of the Pacific Ocean, between Alaska and Kamchatka Peninsula. The geological setting of the region is characterized by the subduction of the oceanic Pacific Plate below the continental North American Plate. Other features include high seismic activity along the Aleutian island arcs bordering the oceanic seafloor. The objective of this paper is to explore the interaction between the geophysical setting affecting the relief of the seafloor by using geoinformation techniques and geological analysis. In the hypothesis of this study, variations in the geophysical fields as independent variables are reflected in the morphology of the seafloor, which can be observed using data visualization by the advanced cartographic scripting solutions. The open source high-resolution topographic map (ETOPO1), marine free-air gravity and Bouguer gravity anomaly data were used and integrated to investigate the potential correlation between the geophysical, geological, tectonic and topographic settings of the Bering Sea. Our main method includes bathymetric mapping of the area with publicly available bathymetric data using GMT. Materials include open source data: ETOPO1 raster grid with 1 arc-minute resolution, EGM96 gravity and vector contour layers of GMT. The research included complex thematic mapping of the region, including topographic, contour, geodetic and geophysical mapping, 3D modelling and geomorphological plotting of the 30 cross-section segments of the trench located SE off the Bowers Ridge. According to the processed ETOPO1 dataset, the minimal depth is -8480 m and the mean is -3089.154 m. The geoid undulations model shows that the majority of the gravity values lie in the interval between -10 and 20 m with the lowest values along the trench. The statistical histogram shows that the most common depth value in the segment of the Aleutian Trench is -4800 m, occurring 1722 times. The profile linear trend modelling was done with four different approaches of the regression model (y = f(x) + e) by weighted least squares (WLS) with arguments: 1) m2t = a + bt (polynomial model degree one); 2) m3t = a + bt + ct2 (polynomial model degree two); 3) m4t = a + bt + ct2 + dcos2π*t + esin2π*t (polynomial model with Fourier series one); and 4) additional plotting residuals. Surface modelling was performed using xyz modelling from the ASCII data enlarging fragment towards SE of the Bowers Ridge. The tested functionality of modules of GMT presented an effective cartographic scripting toolset enabling a precise topographic mapping and 3D modelling. The paper contributes to a more detailed understanding of the Pacific Ocean seafloor bathymetry, more specifically of the selected segment of the Aleutian Trench near Bowers Ridge area.","PeriodicalId":55401,"journal":{"name":"Baltica","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Topography of the Aleutian Trench south-east off Bowers Ridge, Bering Sea, in the context of the geological development of North Pacific Ocean\",\"authors\":\"Polina Lemenkova\",\"doi\":\"10.5200/baltica.2021.1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research is focused on the topographic modelling and mapping of the Aleutian Trench. The study area is situated in the Bering Sea, a marginal sea located northernmost of the Pacific Ocean, between Alaska and Kamchatka Peninsula. The geological setting of the region is characterized by the subduction of the oceanic Pacific Plate below the continental North American Plate. Other features include high seismic activity along the Aleutian island arcs bordering the oceanic seafloor. The objective of this paper is to explore the interaction between the geophysical setting affecting the relief of the seafloor by using geoinformation techniques and geological analysis. In the hypothesis of this study, variations in the geophysical fields as independent variables are reflected in the morphology of the seafloor, which can be observed using data visualization by the advanced cartographic scripting solutions. The open source high-resolution topographic map (ETOPO1), marine free-air gravity and Bouguer gravity anomaly data were used and integrated to investigate the potential correlation between the geophysical, geological, tectonic and topographic settings of the Bering Sea. Our main method includes bathymetric mapping of the area with publicly available bathymetric data using GMT. Materials include open source data: ETOPO1 raster grid with 1 arc-minute resolution, EGM96 gravity and vector contour layers of GMT. The research included complex thematic mapping of the region, including topographic, contour, geodetic and geophysical mapping, 3D modelling and geomorphological plotting of the 30 cross-section segments of the trench located SE off the Bowers Ridge. According to the processed ETOPO1 dataset, the minimal depth is -8480 m and the mean is -3089.154 m. The geoid undulations model shows that the majority of the gravity values lie in the interval between -10 and 20 m with the lowest values along the trench. The statistical histogram shows that the most common depth value in the segment of the Aleutian Trench is -4800 m, occurring 1722 times. The profile linear trend modelling was done with four different approaches of the regression model (y = f(x) + e) by weighted least squares (WLS) with arguments: 1) m2t = a + bt (polynomial model degree one); 2) m3t = a + bt + ct2 (polynomial model degree two); 3) m4t = a + bt + ct2 + dcos2π*t + esin2π*t (polynomial model with Fourier series one); and 4) additional plotting residuals. Surface modelling was performed using xyz modelling from the ASCII data enlarging fragment towards SE of the Bowers Ridge. The tested functionality of modules of GMT presented an effective cartographic scripting toolset enabling a precise topographic mapping and 3D modelling. The paper contributes to a more detailed understanding of the Pacific Ocean seafloor bathymetry, more specifically of the selected segment of the Aleutian Trench near Bowers Ridge area.\",\"PeriodicalId\":55401,\"journal\":{\"name\":\"Baltica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Baltica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5200/baltica.2021.1.3\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baltica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5200/baltica.2021.1.3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOLOGY","Score":null,"Total":0}
Topography of the Aleutian Trench south-east off Bowers Ridge, Bering Sea, in the context of the geological development of North Pacific Ocean
The research is focused on the topographic modelling and mapping of the Aleutian Trench. The study area is situated in the Bering Sea, a marginal sea located northernmost of the Pacific Ocean, between Alaska and Kamchatka Peninsula. The geological setting of the region is characterized by the subduction of the oceanic Pacific Plate below the continental North American Plate. Other features include high seismic activity along the Aleutian island arcs bordering the oceanic seafloor. The objective of this paper is to explore the interaction between the geophysical setting affecting the relief of the seafloor by using geoinformation techniques and geological analysis. In the hypothesis of this study, variations in the geophysical fields as independent variables are reflected in the morphology of the seafloor, which can be observed using data visualization by the advanced cartographic scripting solutions. The open source high-resolution topographic map (ETOPO1), marine free-air gravity and Bouguer gravity anomaly data were used and integrated to investigate the potential correlation between the geophysical, geological, tectonic and topographic settings of the Bering Sea. Our main method includes bathymetric mapping of the area with publicly available bathymetric data using GMT. Materials include open source data: ETOPO1 raster grid with 1 arc-minute resolution, EGM96 gravity and vector contour layers of GMT. The research included complex thematic mapping of the region, including topographic, contour, geodetic and geophysical mapping, 3D modelling and geomorphological plotting of the 30 cross-section segments of the trench located SE off the Bowers Ridge. According to the processed ETOPO1 dataset, the minimal depth is -8480 m and the mean is -3089.154 m. The geoid undulations model shows that the majority of the gravity values lie in the interval between -10 and 20 m with the lowest values along the trench. The statistical histogram shows that the most common depth value in the segment of the Aleutian Trench is -4800 m, occurring 1722 times. The profile linear trend modelling was done with four different approaches of the regression model (y = f(x) + e) by weighted least squares (WLS) with arguments: 1) m2t = a + bt (polynomial model degree one); 2) m3t = a + bt + ct2 (polynomial model degree two); 3) m4t = a + bt + ct2 + dcos2π*t + esin2π*t (polynomial model with Fourier series one); and 4) additional plotting residuals. Surface modelling was performed using xyz modelling from the ASCII data enlarging fragment towards SE of the Bowers Ridge. The tested functionality of modules of GMT presented an effective cartographic scripting toolset enabling a precise topographic mapping and 3D modelling. The paper contributes to a more detailed understanding of the Pacific Ocean seafloor bathymetry, more specifically of the selected segment of the Aleutian Trench near Bowers Ridge area.
期刊介绍:
BALTICA is an international periodical journal on Earth sciences devoted to the Baltic countries region and the Baltic Sea problems. This edition as a Yearbook is established in 1961 by initiative of Academician Vytautas Gudelis. Since 1993, an Editor-in-Chief of the journal became Academician Algimantas Grigelis. BALTICA is published biannually (in June and December) in cooperation with geoscientists of the circum-Baltic States.
BALTICA is publishing original peer-reviewed papers of international interests on various Earth sciences issues. The particular emphasis is given to Quaternary geology, climate changes and development of ecosystems, palaeogeography, environmental geology, as well as stratigraphy, tectonics, sedimentology and surface processes with relevance to the geological history of the Baltic Sea and land areas. Journal emphasizes modern techniques, methodology and standards. The journal structure comprises original articles, short reviews, information, bibliography.