{"title":"二氧化钛纳米颗粒在体外和体内穿透轻微损伤皮肤的实验研究","authors":"Guangping Xie, Weixin Lu, Dongmin Lu","doi":"10.5301/jabfm.5000243","DOIUrl":null,"url":null,"abstract":"Purpose Titanium dioxide nanoparticles (TiO2-NPs) have been widely developed for versatile use, but the potential risk form their skin exposure is still unclear. To evaluate this risk, the skin penetration of TiO2-NPs is necessary to be understood first. The aims of this study are to investigated the penetration of TiO2-NPs through slightly damaged skin and intact skin in vitro and in vivo. Methods TiO2-NPs with a diameter of 20 nm was labeled with 125I. The skin of rat was treated with 2% SLS solution and obtained as slightly damaged skin. The 125I labeled TiO2-NPs (125I-TiO2-NPs)solution and 0.9% PS solution were added into the donor chamber and receptor chamber of static diffusion cells which clamped the skin at the middle of two half-cells, respectively. During 24 hours, samples were extracted from the receptor chamber and counted for 1 min using γ-counter to detect the radioactivity. The skin penetration of TiO2-NPs in vitro was expressed as the percentage of radioactivity of receptor chamber solution compared with total radioactivity in the donor chamber. Thereafter, the 125I-TiO2-NPs was exposed to the rats. After 1 day and 3 days, the blood and tissues of rats were harvested, weighed and counted for 1 min using γ-counter to detect the tissue radioactivity. The skin penetration of TiO2-NPs in vivo was expressed as the percentage dose per gram tissue (% dose/g). Results In the skin penetration experiment in vitro, the radioactivity of receptor chamber solution through damaged skin was higher than that of through intact skin and was about 2% radioactivity of donor chamber on 24 h. In the skin penetration experiment in vivo, the radioactivity of blood and tissues of rats after exposing to 125I-TiO2-NPs solution though damaged skin or intact skin were less than 0.05% dose/g on 1 d and quickly declined on 3 d. The skin penetration rates of TiO2-NPs through slightly damaged skin and intact skin in vitro and vivo were lower than the rate of free 125I in the TiO2-NPs solution. Conclusions The TiO2-NPs could not penetrate through the damaged skin or intact skin both in vitro and in vivo. It suggested that the TiO2-NPs should be safe when it was applied and contacted with skin.","PeriodicalId":51074,"journal":{"name":"Journal of Applied Biomaterials & Biomechanics","volume":"13 1","pages":"356 - 361"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5301/jabfm.5000243","citationCount":"21","resultStr":"{\"title\":\"Penetration of Titanium Dioxide Nanoparticles through Slightly Damaged Skin in Vitro and in vivo\",\"authors\":\"Guangping Xie, Weixin Lu, Dongmin Lu\",\"doi\":\"10.5301/jabfm.5000243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose Titanium dioxide nanoparticles (TiO2-NPs) have been widely developed for versatile use, but the potential risk form their skin exposure is still unclear. To evaluate this risk, the skin penetration of TiO2-NPs is necessary to be understood first. The aims of this study are to investigated the penetration of TiO2-NPs through slightly damaged skin and intact skin in vitro and in vivo. Methods TiO2-NPs with a diameter of 20 nm was labeled with 125I. The skin of rat was treated with 2% SLS solution and obtained as slightly damaged skin. The 125I labeled TiO2-NPs (125I-TiO2-NPs)solution and 0.9% PS solution were added into the donor chamber and receptor chamber of static diffusion cells which clamped the skin at the middle of two half-cells, respectively. During 24 hours, samples were extracted from the receptor chamber and counted for 1 min using γ-counter to detect the radioactivity. The skin penetration of TiO2-NPs in vitro was expressed as the percentage of radioactivity of receptor chamber solution compared with total radioactivity in the donor chamber. Thereafter, the 125I-TiO2-NPs was exposed to the rats. After 1 day and 3 days, the blood and tissues of rats were harvested, weighed and counted for 1 min using γ-counter to detect the tissue radioactivity. The skin penetration of TiO2-NPs in vivo was expressed as the percentage dose per gram tissue (% dose/g). Results In the skin penetration experiment in vitro, the radioactivity of receptor chamber solution through damaged skin was higher than that of through intact skin and was about 2% radioactivity of donor chamber on 24 h. In the skin penetration experiment in vivo, the radioactivity of blood and tissues of rats after exposing to 125I-TiO2-NPs solution though damaged skin or intact skin were less than 0.05% dose/g on 1 d and quickly declined on 3 d. The skin penetration rates of TiO2-NPs through slightly damaged skin and intact skin in vitro and vivo were lower than the rate of free 125I in the TiO2-NPs solution. Conclusions The TiO2-NPs could not penetrate through the damaged skin or intact skin both in vitro and in vivo. It suggested that the TiO2-NPs should be safe when it was applied and contacted with skin.\",\"PeriodicalId\":51074,\"journal\":{\"name\":\"Journal of Applied Biomaterials & Biomechanics\",\"volume\":\"13 1\",\"pages\":\"356 - 361\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5301/jabfm.5000243\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomaterials & Biomechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5301/jabfm.5000243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5301/jabfm.5000243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Penetration of Titanium Dioxide Nanoparticles through Slightly Damaged Skin in Vitro and in vivo
Purpose Titanium dioxide nanoparticles (TiO2-NPs) have been widely developed for versatile use, but the potential risk form their skin exposure is still unclear. To evaluate this risk, the skin penetration of TiO2-NPs is necessary to be understood first. The aims of this study are to investigated the penetration of TiO2-NPs through slightly damaged skin and intact skin in vitro and in vivo. Methods TiO2-NPs with a diameter of 20 nm was labeled with 125I. The skin of rat was treated with 2% SLS solution and obtained as slightly damaged skin. The 125I labeled TiO2-NPs (125I-TiO2-NPs)solution and 0.9% PS solution were added into the donor chamber and receptor chamber of static diffusion cells which clamped the skin at the middle of two half-cells, respectively. During 24 hours, samples were extracted from the receptor chamber and counted for 1 min using γ-counter to detect the radioactivity. The skin penetration of TiO2-NPs in vitro was expressed as the percentage of radioactivity of receptor chamber solution compared with total radioactivity in the donor chamber. Thereafter, the 125I-TiO2-NPs was exposed to the rats. After 1 day and 3 days, the blood and tissues of rats were harvested, weighed and counted for 1 min using γ-counter to detect the tissue radioactivity. The skin penetration of TiO2-NPs in vivo was expressed as the percentage dose per gram tissue (% dose/g). Results In the skin penetration experiment in vitro, the radioactivity of receptor chamber solution through damaged skin was higher than that of through intact skin and was about 2% radioactivity of donor chamber on 24 h. In the skin penetration experiment in vivo, the radioactivity of blood and tissues of rats after exposing to 125I-TiO2-NPs solution though damaged skin or intact skin were less than 0.05% dose/g on 1 d and quickly declined on 3 d. The skin penetration rates of TiO2-NPs through slightly damaged skin and intact skin in vitro and vivo were lower than the rate of free 125I in the TiO2-NPs solution. Conclusions The TiO2-NPs could not penetrate through the damaged skin or intact skin both in vitro and in vivo. It suggested that the TiO2-NPs should be safe when it was applied and contacted with skin.