Rv1980c干扰Rv3019c序列多肽融合蛋白的克隆、表达和鉴定及其在肺结核血清中的潜在免疫反应性评价

I. G. Sardella, Ana Carla de Paulo Mulinari, L. Fonseca, M. Saad
{"title":"Rv1980c干扰Rv3019c序列多肽融合蛋白的克隆、表达和鉴定及其在肺结核血清中的潜在免疫反应性评价","authors":"I. G. Sardella, Ana Carla de Paulo Mulinari, L. Fonseca, M. Saad","doi":"10.4172/2161-1068.1000183","DOIUrl":null,"url":null,"abstract":"Mycobacterium tuberculosis-specific antigens (Ag) would be of important value in developing immunodiagnostic test for tuberculosis (TB), however human heterogeneous recognition of Ag epitopes may result in specificity variation of the test. In this work, we described the construction of two fusion proteins, based on two peptides from MPT-64 disrupting MT-10 Ag, F1-MT10.3 (1M-40S):CE15 (173G-187A):MT10.3 (41S-96) and F2- MT10.3 (1M-40S):MPT64 (91L-205A):MT10.3 (41S-96), and their potential immunoreactivity in TB sera. These fusion genes were cloned in expression vector, inserted in E. coli, and their proteins were expressed and purified. Using ELISA technique purified fused proteins and single full antigens were evaluated for IgA, IgM and IgG in sera from individuals diagnosed with pulmonary tuberculosis (TB) and controls with other pulmonary disease. The F1 construction generated a new peptide and F2 generate two modified peptides compared with the single full proteins. Testing of the tuberculosis human sera, the constructions were recognized by all antibodies types but the best results was obtained for ELISA-IgA which predominantly recognized the F2 (66.7%) and F1 (58.3%), follow by full single antigens MT10.3 (41.7%) and MPT64 (16.7%) keeping the highest specificity (95.5%), hitherto being unnoticed. Reactivity of IgG-F1 and IgM-F2 showed higher UAC than full MT10.2 and MPT64. The data demonstrated the viability of the constructions and the usefulness of molecule modification for obtains potential immune reactivity improvement, deserving further immunological characterization.","PeriodicalId":74235,"journal":{"name":"Mycobacterial diseases : tuberculosis & leprosy","volume":"5 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Cloning, Expression and Characterization of Fusion Proteins Based on Peptides of Rv1980c Disrupting Rv3019c Sequence and Evaluation of its Potential Immunoreactivity in Pulmonary Tuberculosis Sera\",\"authors\":\"I. G. Sardella, Ana Carla de Paulo Mulinari, L. Fonseca, M. Saad\",\"doi\":\"10.4172/2161-1068.1000183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mycobacterium tuberculosis-specific antigens (Ag) would be of important value in developing immunodiagnostic test for tuberculosis (TB), however human heterogeneous recognition of Ag epitopes may result in specificity variation of the test. In this work, we described the construction of two fusion proteins, based on two peptides from MPT-64 disrupting MT-10 Ag, F1-MT10.3 (1M-40S):CE15 (173G-187A):MT10.3 (41S-96) and F2- MT10.3 (1M-40S):MPT64 (91L-205A):MT10.3 (41S-96), and their potential immunoreactivity in TB sera. These fusion genes were cloned in expression vector, inserted in E. coli, and their proteins were expressed and purified. Using ELISA technique purified fused proteins and single full antigens were evaluated for IgA, IgM and IgG in sera from individuals diagnosed with pulmonary tuberculosis (TB) and controls with other pulmonary disease. The F1 construction generated a new peptide and F2 generate two modified peptides compared with the single full proteins. Testing of the tuberculosis human sera, the constructions were recognized by all antibodies types but the best results was obtained for ELISA-IgA which predominantly recognized the F2 (66.7%) and F1 (58.3%), follow by full single antigens MT10.3 (41.7%) and MPT64 (16.7%) keeping the highest specificity (95.5%), hitherto being unnoticed. Reactivity of IgG-F1 and IgM-F2 showed higher UAC than full MT10.2 and MPT64. The data demonstrated the viability of the constructions and the usefulness of molecule modification for obtains potential immune reactivity improvement, deserving further immunological characterization.\",\"PeriodicalId\":74235,\"journal\":{\"name\":\"Mycobacterial diseases : tuberculosis & leprosy\",\"volume\":\"5 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycobacterial diseases : tuberculosis & leprosy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2161-1068.1000183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycobacterial diseases : tuberculosis & leprosy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2161-1068.1000183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

摘要结核分枝杆菌特异性抗原(Ag)在开发结核免疫诊断试验中具有重要价值,但人类对Ag表位的异质识别可能导致该试验的特异性变化。在这项工作中,我们描述了基于MPT-64破坏MT-10 Ag的两个肽的两个融合蛋白的构建,F1-MT10.3 (1M-40S):CE15 (173G-187A):MT10.3 (41S-96)和F2- MT10.3 (1M-40S):MPT64 (91L-205A):MT10.3 (41S-96),以及它们在TB血清中的潜在免疫反应性。将这些融合基因克隆到表达载体中,插入大肠杆菌中,进行蛋白表达和纯化。采用ELISA技术对诊断为肺结核(TB)和其他肺部疾病对照者血清中IgA、IgM和IgG的纯化融合蛋白和单抗原进行检测。与单个完整蛋白相比,F1构建生成1个新肽,F2构建生成2个修饰肽。在结核病人血清检测中,这些结构均能被所有类型的抗体识别,但ELISA-IgA的结果最好,主要识别F2(66.7%)和F1(58.3%),其次是全单抗原MT10.3(41.7%)和MPT64(16.7%),特异性最高(95.5%),迄今未被注意到。IgG-F1和IgM-F2的反应性高于全MT10.2和MPT64。这些数据证明了这些结构的可行性和分子修饰对获得潜在的免疫反应性改善的有效性,值得进一步的免疫学表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cloning, Expression and Characterization of Fusion Proteins Based on Peptides of Rv1980c Disrupting Rv3019c Sequence and Evaluation of its Potential Immunoreactivity in Pulmonary Tuberculosis Sera
Mycobacterium tuberculosis-specific antigens (Ag) would be of important value in developing immunodiagnostic test for tuberculosis (TB), however human heterogeneous recognition of Ag epitopes may result in specificity variation of the test. In this work, we described the construction of two fusion proteins, based on two peptides from MPT-64 disrupting MT-10 Ag, F1-MT10.3 (1M-40S):CE15 (173G-187A):MT10.3 (41S-96) and F2- MT10.3 (1M-40S):MPT64 (91L-205A):MT10.3 (41S-96), and their potential immunoreactivity in TB sera. These fusion genes were cloned in expression vector, inserted in E. coli, and their proteins were expressed and purified. Using ELISA technique purified fused proteins and single full antigens were evaluated for IgA, IgM and IgG in sera from individuals diagnosed with pulmonary tuberculosis (TB) and controls with other pulmonary disease. The F1 construction generated a new peptide and F2 generate two modified peptides compared with the single full proteins. Testing of the tuberculosis human sera, the constructions were recognized by all antibodies types but the best results was obtained for ELISA-IgA which predominantly recognized the F2 (66.7%) and F1 (58.3%), follow by full single antigens MT10.3 (41.7%) and MPT64 (16.7%) keeping the highest specificity (95.5%), hitherto being unnoticed. Reactivity of IgG-F1 and IgM-F2 showed higher UAC than full MT10.2 and MPT64. The data demonstrated the viability of the constructions and the usefulness of molecule modification for obtains potential immune reactivity improvement, deserving further immunological characterization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信