{"title":"基于电流控制CFTA的分数阶正交振荡器","authors":"Tada Comedang, P. Intani","doi":"10.4236/CS.2016.713345","DOIUrl":null,"url":null,"abstract":"This paper presents a study of fractional order quadrature oscillators based on current-controlled current follower transconductance amplifiers (CCCFTA). The design realisation and performance of the fractional order quadrature oscillators have been presented. The quadrature oscillators are constructed using three fractional capacitors of orders α = 0.5. The fractional capacitor is not available on the market or in the PSPICE program. Fortunately, the fractional capacitor can be realised by using the approximate method for the RC ladder network approximation. The oscillation frequency and oscillation condition can be electronically/orthogonally controlled via input bias currents. Due to high-output impedances, the proposed circuit enables easy cascading in current-mode (CM). The PSPICE simulation results are depicted, and the given results agree well with the anticipated theoretical outcomes.","PeriodicalId":63422,"journal":{"name":"电路与系统(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Current-Controlled CFTA Based Fractional Order Quadrature Oscillators\",\"authors\":\"Tada Comedang, P. Intani\",\"doi\":\"10.4236/CS.2016.713345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a study of fractional order quadrature oscillators based on current-controlled current follower transconductance amplifiers (CCCFTA). The design realisation and performance of the fractional order quadrature oscillators have been presented. The quadrature oscillators are constructed using three fractional capacitors of orders α = 0.5. The fractional capacitor is not available on the market or in the PSPICE program. Fortunately, the fractional capacitor can be realised by using the approximate method for the RC ladder network approximation. The oscillation frequency and oscillation condition can be electronically/orthogonally controlled via input bias currents. Due to high-output impedances, the proposed circuit enables easy cascading in current-mode (CM). The PSPICE simulation results are depicted, and the given results agree well with the anticipated theoretical outcomes.\",\"PeriodicalId\":63422,\"journal\":{\"name\":\"电路与系统(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"电路与系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/CS.2016.713345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"电路与系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/CS.2016.713345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Current-Controlled CFTA Based Fractional Order Quadrature Oscillators
This paper presents a study of fractional order quadrature oscillators based on current-controlled current follower transconductance amplifiers (CCCFTA). The design realisation and performance of the fractional order quadrature oscillators have been presented. The quadrature oscillators are constructed using three fractional capacitors of orders α = 0.5. The fractional capacitor is not available on the market or in the PSPICE program. Fortunately, the fractional capacitor can be realised by using the approximate method for the RC ladder network approximation. The oscillation frequency and oscillation condition can be electronically/orthogonally controlled via input bias currents. Due to high-output impedances, the proposed circuit enables easy cascading in current-mode (CM). The PSPICE simulation results are depicted, and the given results agree well with the anticipated theoretical outcomes.