Fenômica

IF 1.3 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Marcos Roberto dos Santos, Guilherme Afonso Madalozzo, J. M. Fernandes, Rafael Rieder
{"title":"Fenômica","authors":"Marcos Roberto dos Santos, Guilherme Afonso Madalozzo, J. M. Fernandes, Rafael Rieder","doi":"10.4018/ijaeis.2020010101","DOIUrl":null,"url":null,"abstract":"Computer vision and image processing procedures could obtain crop data frequently and precisely, such as vegetation indexes, and correlating them with other variables, like biomass and crop yield. This work presents the development of a computer vision system for high-throughput phenotyping, considering three solutions: an image capture software linked to a low-cost appliance; an image-processing program for feature extraction; and a web application for results' presentation. As a case study, we used normalized difference vegetation index (NDVI) data from a wheat crop experiment of the Brazilian Agricultural Research Corporation. Regression analysis showed that NDVI explains 98.9, 92.8, and 88.2% of the variability found in the biomass values for crop plots with 82, 150, and 200 kg of N ha1 fertilizer applications, respectively. As a result, NDVI generated by our system presented a strong correlation with the biomass, showing a way to specify a new yield prediction model from the beginning of the crop.","PeriodicalId":54004,"journal":{"name":"International Journal of Agricultural and Environmental Information Systems","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4018/ijaeis.2020010101","citationCount":"1","resultStr":"{\"title\":\"Fenômica\",\"authors\":\"Marcos Roberto dos Santos, Guilherme Afonso Madalozzo, J. M. Fernandes, Rafael Rieder\",\"doi\":\"10.4018/ijaeis.2020010101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer vision and image processing procedures could obtain crop data frequently and precisely, such as vegetation indexes, and correlating them with other variables, like biomass and crop yield. This work presents the development of a computer vision system for high-throughput phenotyping, considering three solutions: an image capture software linked to a low-cost appliance; an image-processing program for feature extraction; and a web application for results' presentation. As a case study, we used normalized difference vegetation index (NDVI) data from a wheat crop experiment of the Brazilian Agricultural Research Corporation. Regression analysis showed that NDVI explains 98.9, 92.8, and 88.2% of the variability found in the biomass values for crop plots with 82, 150, and 200 kg of N ha1 fertilizer applications, respectively. As a result, NDVI generated by our system presented a strong correlation with the biomass, showing a way to specify a new yield prediction model from the beginning of the crop.\",\"PeriodicalId\":54004,\"journal\":{\"name\":\"International Journal of Agricultural and Environmental Information Systems\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4018/ijaeis.2020010101\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Agricultural and Environmental Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijaeis.2020010101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agricultural and Environmental Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijaeis.2020010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

计算机视觉和图像处理程序可以频繁而精确地获取作物数据,如植被指数,并将其与生物量和作物产量等其他变量相关联。这项工作提出了一种用于高通量表型的计算机视觉系统的发展,考虑了三种解决方案:与低成本设备相连的图像捕获软件;用于特征提取的图像处理程序;以及一个用于结果展示的web应用程序。作为案例研究,我们使用了巴西农业研究公司小麦作物试验的归一化植被指数(NDVI)数据。回归分析表明,NDVI分别解释了施用82,150和200 kg N - ha1的作物地块生物量值的98.9%,92.8%和88.2%的变异。结果表明,该系统生成的NDVI与生物量具有较强的相关性,为从作物开始指定新的产量预测模型提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fenômica
Computer vision and image processing procedures could obtain crop data frequently and precisely, such as vegetation indexes, and correlating them with other variables, like biomass and crop yield. This work presents the development of a computer vision system for high-throughput phenotyping, considering three solutions: an image capture software linked to a low-cost appliance; an image-processing program for feature extraction; and a web application for results' presentation. As a case study, we used normalized difference vegetation index (NDVI) data from a wheat crop experiment of the Brazilian Agricultural Research Corporation. Regression analysis showed that NDVI explains 98.9, 92.8, and 88.2% of the variability found in the biomass values for crop plots with 82, 150, and 200 kg of N ha1 fertilizer applications, respectively. As a result, NDVI generated by our system presented a strong correlation with the biomass, showing a way to specify a new yield prediction model from the beginning of the crop.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Agricultural and Environmental Information Systems
International Journal of Agricultural and Environmental Information Systems COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
6.70
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信