{"title":"自伴随ODE系统嵌入特征值的扰动","authors":"Sara Maad Sasane, Alexia Papalazarou","doi":"10.4310/arkiv.2023.v61.n1.a9","DOIUrl":null,"url":null,"abstract":"We consider a perturbation problem for embedded eigenvalues of a self-adjoint differential operator in $L^2(\\mathbb R;\\mathbb R^n)$. In particular, we study the set of all small perturbations in an appropriate Banach space for which the embedded eigenvalue remains embedded in the continuous spectrum. We show that this set of small perturbations forms a smooth manifold and we specify its co-dimension. Our methods involve the use of exponential dichotomies, their roughness property and Lyapunov-Schmidt reduction.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Perturbations of embedded eigenvalues for self-adjoint ODE systems\",\"authors\":\"Sara Maad Sasane, Alexia Papalazarou\",\"doi\":\"10.4310/arkiv.2023.v61.n1.a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a perturbation problem for embedded eigenvalues of a self-adjoint differential operator in $L^2(\\\\mathbb R;\\\\mathbb R^n)$. In particular, we study the set of all small perturbations in an appropriate Banach space for which the embedded eigenvalue remains embedded in the continuous spectrum. We show that this set of small perturbations forms a smooth manifold and we specify its co-dimension. Our methods involve the use of exponential dichotomies, their roughness property and Lyapunov-Schmidt reduction.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2023.v61.n1.a9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2023.v61.n1.a9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Perturbations of embedded eigenvalues for self-adjoint ODE systems
We consider a perturbation problem for embedded eigenvalues of a self-adjoint differential operator in $L^2(\mathbb R;\mathbb R^n)$. In particular, we study the set of all small perturbations in an appropriate Banach space for which the embedded eigenvalue remains embedded in the continuous spectrum. We show that this set of small perturbations forms a smooth manifold and we specify its co-dimension. Our methods involve the use of exponential dichotomies, their roughness property and Lyapunov-Schmidt reduction.