交点理论与bot - Chern上同调中的Chern类

IF 0.8 4区 数学 Q2 MATHEMATICS
Xiaojun Wu
{"title":"交点理论与bot - Chern上同调中的Chern类","authors":"Xiaojun Wu","doi":"10.4310/arkiv.2023.v61.n1.a11","DOIUrl":null,"url":null,"abstract":"In this article, we investigate an axiomatic approach introduced by Grivaux for the study of rational Bott-Chern cohomology, and use it in that context to define Chern classes of coherent sheaves. This method also allows us to derive a Riemann-Roch-Grothendieck formula for a projective morphism between smooth complex compact manifolds. In the general case of complex spaces, the Poincar\\'e and Dolbeault-Grothendieck lemmas are not always valid. For this reason, and to simplify the exposition, we only consider non singular complex spaces. The appendix presents a calculation of integral Bott-Chern cohomology in top degree for a connected compact manifold.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Intersection theory and Chern classes in Bott–Chern cohomology\",\"authors\":\"Xiaojun Wu\",\"doi\":\"10.4310/arkiv.2023.v61.n1.a11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we investigate an axiomatic approach introduced by Grivaux for the study of rational Bott-Chern cohomology, and use it in that context to define Chern classes of coherent sheaves. This method also allows us to derive a Riemann-Roch-Grothendieck formula for a projective morphism between smooth complex compact manifolds. In the general case of complex spaces, the Poincar\\\\'e and Dolbeault-Grothendieck lemmas are not always valid. For this reason, and to simplify the exposition, we only consider non singular complex spaces. The appendix presents a calculation of integral Bott-Chern cohomology in top degree for a connected compact manifold.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2023.v61.n1.a11\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2023.v61.n1.a11","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们研究了由Grivaux引入的研究有理bot -Chern上同调的公理化方法,并在此背景下使用它来定义相干束的Chern类。该方法还允许我们导出光滑复紧流形之间的射影态射的Riemann-Roch-Grothendieck公式。在复空间的一般情况下,庞加莱和Dolbeault-Grothendieck引理并不总是有效的。因此,为了简化说明,我们只考虑非奇异的复空间。本文给出了连通紧流形的上次积分bot - chen上同的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intersection theory and Chern classes in Bott–Chern cohomology
In this article, we investigate an axiomatic approach introduced by Grivaux for the study of rational Bott-Chern cohomology, and use it in that context to define Chern classes of coherent sheaves. This method also allows us to derive a Riemann-Roch-Grothendieck formula for a projective morphism between smooth complex compact manifolds. In the general case of complex spaces, the Poincar\'e and Dolbeault-Grothendieck lemmas are not always valid. For this reason, and to simplify the exposition, we only consider non singular complex spaces. The appendix presents a calculation of integral Bott-Chern cohomology in top degree for a connected compact manifold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信