{"title":"交点理论与bot - Chern上同调中的Chern类","authors":"Xiaojun Wu","doi":"10.4310/arkiv.2023.v61.n1.a11","DOIUrl":null,"url":null,"abstract":"In this article, we investigate an axiomatic approach introduced by Grivaux for the study of rational Bott-Chern cohomology, and use it in that context to define Chern classes of coherent sheaves. This method also allows us to derive a Riemann-Roch-Grothendieck formula for a projective morphism between smooth complex compact manifolds. In the general case of complex spaces, the Poincar\\'e and Dolbeault-Grothendieck lemmas are not always valid. For this reason, and to simplify the exposition, we only consider non singular complex spaces. The appendix presents a calculation of integral Bott-Chern cohomology in top degree for a connected compact manifold.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Intersection theory and Chern classes in Bott–Chern cohomology\",\"authors\":\"Xiaojun Wu\",\"doi\":\"10.4310/arkiv.2023.v61.n1.a11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we investigate an axiomatic approach introduced by Grivaux for the study of rational Bott-Chern cohomology, and use it in that context to define Chern classes of coherent sheaves. This method also allows us to derive a Riemann-Roch-Grothendieck formula for a projective morphism between smooth complex compact manifolds. In the general case of complex spaces, the Poincar\\\\'e and Dolbeault-Grothendieck lemmas are not always valid. For this reason, and to simplify the exposition, we only consider non singular complex spaces. The appendix presents a calculation of integral Bott-Chern cohomology in top degree for a connected compact manifold.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2023.v61.n1.a11\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2023.v61.n1.a11","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Intersection theory and Chern classes in Bott–Chern cohomology
In this article, we investigate an axiomatic approach introduced by Grivaux for the study of rational Bott-Chern cohomology, and use it in that context to define Chern classes of coherent sheaves. This method also allows us to derive a Riemann-Roch-Grothendieck formula for a projective morphism between smooth complex compact manifolds. In the general case of complex spaces, the Poincar\'e and Dolbeault-Grothendieck lemmas are not always valid. For this reason, and to simplify the exposition, we only consider non singular complex spaces. The appendix presents a calculation of integral Bott-Chern cohomology in top degree for a connected compact manifold.