论理想一元群的算术

IF 0.8 4区 数学 Q2 MATHEMATICS
A. Geroldinger, M. A. Khadam
{"title":"论理想一元群的算术","authors":"A. Geroldinger, M. A. Khadam","doi":"10.4310/arkiv.2022.v60.n1.a4","DOIUrl":null,"url":null,"abstract":"We study the algebraic and arithmetic structure of monoids of invertible ideals (more precisely, of r-invertible r-ideals for certain ideal systems r) of Krull and weakly Krull Mori domains. We also investigate monoids of all nonzero ideals of polynomial rings with at least two indeterminates over noetherian domains. Among others, we show that they are not transfer Krull but they share several arithmetic phenomena with Krull monoids having infinite class group and prime divisors in all classes.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On the arithmetic of monoids of ideals\",\"authors\":\"A. Geroldinger, M. A. Khadam\",\"doi\":\"10.4310/arkiv.2022.v60.n1.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the algebraic and arithmetic structure of monoids of invertible ideals (more precisely, of r-invertible r-ideals for certain ideal systems r) of Krull and weakly Krull Mori domains. We also investigate monoids of all nonzero ideals of polynomial rings with at least two indeterminates over noetherian domains. Among others, we show that they are not transfer Krull but they share several arithmetic phenomena with Krull monoids having infinite class group and prime divisors in all classes.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2022.v60.n1.a4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2022.v60.n1.a4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

研究了Krull和弱Krull Mori域可逆理想(更确切地说,是某些理想系统r的r可逆理想)的模群的代数和算术结构。我们也研究了noether域上至少有两个不定数的多项式环的所有非零理想的幺群。其中,我们证明了它们不是迁移Krull,但它们与具有无限类群和所有类的素数的Krull模群有几个相同的算术现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the arithmetic of monoids of ideals
We study the algebraic and arithmetic structure of monoids of invertible ideals (more precisely, of r-invertible r-ideals for certain ideal systems r) of Krull and weakly Krull Mori domains. We also investigate monoids of all nonzero ideals of polynomial rings with at least two indeterminates over noetherian domains. Among others, we show that they are not transfer Krull but they share several arithmetic phenomena with Krull monoids having infinite class group and prime divisors in all classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信