{"title":"在Prym曲线的轨迹上,其中Prym-正则映射不是嵌入","authors":"C. Ciliberto, T. Dedieu, C. Galati, A. L. Knutsen","doi":"10.4310/ARKIV.2020.v58.n1.a5","DOIUrl":null,"url":null,"abstract":"We prove that the locus of Prym curves $(C,\\eta)$ of genus $g \\geq 5$ for which the Prym-canonical system $|\\omega_C(\\eta)|$ is base point free but the Prym--canonical map is not an embedding is irreducible and unirational of dimension $2g+1$.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the locus of Prym curves where the Prym-canonical map is not an embedding\",\"authors\":\"C. Ciliberto, T. Dedieu, C. Galati, A. L. Knutsen\",\"doi\":\"10.4310/ARKIV.2020.v58.n1.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the locus of Prym curves $(C,\\\\eta)$ of genus $g \\\\geq 5$ for which the Prym-canonical system $|\\\\omega_C(\\\\eta)|$ is base point free but the Prym--canonical map is not an embedding is irreducible and unirational of dimension $2g+1$.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ARKIV.2020.v58.n1.a5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ARKIV.2020.v58.n1.a5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the locus of Prym curves where the Prym-canonical map is not an embedding
We prove that the locus of Prym curves $(C,\eta)$ of genus $g \geq 5$ for which the Prym-canonical system $|\omega_C(\eta)|$ is base point free but the Prym--canonical map is not an embedding is irreducible and unirational of dimension $2g+1$.