在Prym曲线的轨迹上,其中Prym-正则映射不是嵌入

IF 0.8 4区 数学 Q2 MATHEMATICS
C. Ciliberto, T. Dedieu, C. Galati, A. L. Knutsen
{"title":"在Prym曲线的轨迹上,其中Prym-正则映射不是嵌入","authors":"C. Ciliberto, T. Dedieu, C. Galati, A. L. Knutsen","doi":"10.4310/ARKIV.2020.v58.n1.a5","DOIUrl":null,"url":null,"abstract":"We prove that the locus of Prym curves $(C,\\eta)$ of genus $g \\geq 5$ for which the Prym-canonical system $|\\omega_C(\\eta)|$ is base point free but the Prym--canonical map is not an embedding is irreducible and unirational of dimension $2g+1$.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the locus of Prym curves where the Prym-canonical map is not an embedding\",\"authors\":\"C. Ciliberto, T. Dedieu, C. Galati, A. L. Knutsen\",\"doi\":\"10.4310/ARKIV.2020.v58.n1.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the locus of Prym curves $(C,\\\\eta)$ of genus $g \\\\geq 5$ for which the Prym-canonical system $|\\\\omega_C(\\\\eta)|$ is base point free but the Prym--canonical map is not an embedding is irreducible and unirational of dimension $2g+1$.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ARKIV.2020.v58.n1.a5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ARKIV.2020.v58.n1.a5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

证明了Prym-正则系统$|\omega_C(\eta)|$是无基点但Prym-正则映射不是嵌入的Prym-正则映射的Prym曲线$(C,\eta)$属$g \geq 5$的轨迹是不可约的、一维的$2g+1$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the locus of Prym curves where the Prym-canonical map is not an embedding
We prove that the locus of Prym curves $(C,\eta)$ of genus $g \geq 5$ for which the Prym-canonical system $|\omega_C(\eta)|$ is base point free but the Prym--canonical map is not an embedding is irreducible and unirational of dimension $2g+1$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信