具有全局分段的周期性流

IF 0.8 4区 数学 Q2 MATHEMATICS
Khadija Ben Rejeb
{"title":"具有全局分段的周期性流","authors":"Khadija Ben Rejeb","doi":"10.4310/arkiv.2020.v58.n1.a3","DOIUrl":null,"url":null,"abstract":"Let G={ht | t∈R} be a continuous flow on a connected n-manifold M . The flow G is said to be strongly reversible by an involution τ if h−t=τhtτ for all t∈R, and it is said to be periodic if hs = identity for some s∈R∗. A closed subset K of M is called a global section for G if every orbit G(x) intersects K in exactly one point. In this paper, we study how the two properties “strongly reversible” and “has a global section” are related. In particular, we show that if G is periodic and strongly reversible by a reflection, then G has a global section.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Periodic flows with global sections\",\"authors\":\"Khadija Ben Rejeb\",\"doi\":\"10.4310/arkiv.2020.v58.n1.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G={ht | t∈R} be a continuous flow on a connected n-manifold M . The flow G is said to be strongly reversible by an involution τ if h−t=τhtτ for all t∈R, and it is said to be periodic if hs = identity for some s∈R∗. A closed subset K of M is called a global section for G if every orbit G(x) intersects K in exactly one point. In this paper, we study how the two properties “strongly reversible” and “has a global section” are related. In particular, we show that if G is periodic and strongly reversible by a reflection, then G has a global section.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2020.v58.n1.a3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2020.v58.n1.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设G={ht | t∈R}是连通n流形M上的连续流。对于所有的t∈R,如果h−t=τhtτ,则流G是强可逆的;对于某些s∈R∗,如果hs =恒等,则流G是周期的。如果每个轨道G(x)与K正好相交于一点,M的封闭子集K就称为G的全局截面。本文研究了“强可逆”和“有全局截面”这两个性质之间的关系。特别地,我们证明了如果G是周期性的并且被反射强可逆,那么G有一个全局截面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic flows with global sections
Let G={ht | t∈R} be a continuous flow on a connected n-manifold M . The flow G is said to be strongly reversible by an involution τ if h−t=τhtτ for all t∈R, and it is said to be periodic if hs = identity for some s∈R∗. A closed subset K of M is called a global section for G if every orbit G(x) intersects K in exactly one point. In this paper, we study how the two properties “strongly reversible” and “has a global section” are related. In particular, we show that if G is periodic and strongly reversible by a reflection, then G has a global section.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信