关于环上排序和赋值的树结构

IF 0.8 4区 数学 Q2 MATHEMATICS
Simon Muller
{"title":"关于环上排序和赋值的树结构","authors":"Simon Muller","doi":"10.4310/ARKIV.2021.V59.N1.A6","DOIUrl":null,"url":null,"abstract":"Let $R$ be a not necessarily commutative ring with $1.$ In the present paper we first introduce a notion of quasi-orderings, which axiomatically subsumes all the orderings and valuations on $R$. We proceed by uniformly defining a coarsening relation $\\leq$ on the set $\\mathcal{Q}(R)$ of all quasi-orderings on $R.$ One of our main results states that $(\\mathcal{Q}(R),\\leq')$ is a rooted tree for some slight modification $\\leq'$ of $\\leq,$ i.e. a partially ordered set admitting a maximum such that for any element there is a unique chain to that maximum. As an application of this theorem we obtain that $(\\mathcal{Q}(R),\\leq')$ is a spectral set, i.e. order-isomorphic to the spectrum of some commutative ring with $1.$ We conclude this paper by studying $\\mathcal{Q}(R)$ as a topological space.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2018-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the tree structure of orderings and valuations on rings\",\"authors\":\"Simon Muller\",\"doi\":\"10.4310/ARKIV.2021.V59.N1.A6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a not necessarily commutative ring with $1.$ In the present paper we first introduce a notion of quasi-orderings, which axiomatically subsumes all the orderings and valuations on $R$. We proceed by uniformly defining a coarsening relation $\\\\leq$ on the set $\\\\mathcal{Q}(R)$ of all quasi-orderings on $R.$ One of our main results states that $(\\\\mathcal{Q}(R),\\\\leq')$ is a rooted tree for some slight modification $\\\\leq'$ of $\\\\leq,$ i.e. a partially ordered set admitting a maximum such that for any element there is a unique chain to that maximum. As an application of this theorem we obtain that $(\\\\mathcal{Q}(R),\\\\leq')$ is a spectral set, i.e. order-isomorphic to the spectrum of some commutative ring with $1.$ We conclude this paper by studying $\\\\mathcal{Q}(R)$ as a topological space.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ARKIV.2021.V59.N1.A6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ARKIV.2021.V59.N1.A6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$R$是一个与$1.$不一定可交换的环。本文首先引入了拟序的概念,它公理地包含了$R$上的所有序和赋值。我们在$R.$上所有拟序的集合$\mathcal{Q}(R)$上统一定义了一个粗化关系$\leq$,我们的一个主要结果表明$(\mathcal{Q}(R),\leq')$是一个对$\leq,$稍加修改$\leq'$的有根树,即一个允许最大值的部分有序集合,对于任何元素都有一个唯一的链到该最大值。作为该定理的一个应用,我们得到$(\mathcal{Q}(R),\leq')$是一个谱集,即与某个具有$1.$的交换环的谱序同构。我们通过研究$\mathcal{Q}(R)$作为拓扑空间来总结本文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the tree structure of orderings and valuations on rings
Let $R$ be a not necessarily commutative ring with $1.$ In the present paper we first introduce a notion of quasi-orderings, which axiomatically subsumes all the orderings and valuations on $R$. We proceed by uniformly defining a coarsening relation $\leq$ on the set $\mathcal{Q}(R)$ of all quasi-orderings on $R.$ One of our main results states that $(\mathcal{Q}(R),\leq')$ is a rooted tree for some slight modification $\leq'$ of $\leq,$ i.e. a partially ordered set admitting a maximum such that for any element there is a unique chain to that maximum. As an application of this theorem we obtain that $(\mathcal{Q}(R),\leq')$ is a spectral set, i.e. order-isomorphic to the spectrum of some commutative ring with $1.$ We conclude this paper by studying $\mathcal{Q}(R)$ as a topological space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信