多维加权射线变换的注入率分解

IF 0.8 4区 数学 Q2 MATHEMATICS
F. Goncharov, R. Novikov
{"title":"多维加权射线变换的注入率分解","authors":"F. Goncharov, R. Novikov","doi":"10.4310/arkiv.2019.v57.n2.a5","DOIUrl":null,"url":null,"abstract":"We consider weighted ray-transforms $P_W$ (weighted Radon transforms along straight lines) in $R^d, \\,d \\geq 2$, with strictly positive weights $W$. We construct an example of such a transform with non-trivial kernel in the space of infinitely smooth compactly supported functions on $R^d$. In addition, the constructed weight W is rotation-invariant continuous and is infinitely smooth almost everywhere on $R^d \\times S^{d-1}$. In particular, by this construction we give counterexamples to some well-known injectivity results for weighted ray transforms for the case when the regularity of $W$ is slightly relaxed.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2017-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A breakdown of injectivity for weighted ray transforms in multidimensions\",\"authors\":\"F. Goncharov, R. Novikov\",\"doi\":\"10.4310/arkiv.2019.v57.n2.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider weighted ray-transforms $P_W$ (weighted Radon transforms along straight lines) in $R^d, \\\\,d \\\\geq 2$, with strictly positive weights $W$. We construct an example of such a transform with non-trivial kernel in the space of infinitely smooth compactly supported functions on $R^d$. In addition, the constructed weight W is rotation-invariant continuous and is infinitely smooth almost everywhere on $R^d \\\\times S^{d-1}$. In particular, by this construction we give counterexamples to some well-known injectivity results for weighted ray transforms for the case when the regularity of $W$ is slightly relaxed.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2019.v57.n2.a5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2019.v57.n2.a5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑$R^d, \,d \geq 2$中的加权射线变换$P_W$(沿直线的加权Radon变换),具有严格的正权$W$。我们在$R^d$上的无限光滑紧支持函数空间中构造了一个具有非平凡核的这种变换的例子。此外,所构造的权值W在$R^d \times S^{d-1}$上几乎处处是无限光滑的,并且是旋转不变连续的。特别地,通过这种构造,我们给出了对于$W$的正则性稍松弛的情况下加权射线变换的一些著名的注入性结果的反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A breakdown of injectivity for weighted ray transforms in multidimensions
We consider weighted ray-transforms $P_W$ (weighted Radon transforms along straight lines) in $R^d, \,d \geq 2$, with strictly positive weights $W$. We construct an example of such a transform with non-trivial kernel in the space of infinitely smooth compactly supported functions on $R^d$. In addition, the constructed weight W is rotation-invariant continuous and is infinitely smooth almost everywhere on $R^d \times S^{d-1}$. In particular, by this construction we give counterexamples to some well-known injectivity results for weighted ray transforms for the case when the regularity of $W$ is slightly relaxed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信