标准静态时空中的弱俘获子流形

IF 0.8 4区 数学 Q2 MATHEMATICS
A. Freitas, H. F. Lima, E. Lima, Márcio S. Santos
{"title":"标准静态时空中的弱俘获子流形","authors":"A. Freitas, H. F. Lima, E. Lima, Márcio S. Santos","doi":"10.4310/arkiv.2019.v57.n2.a4","DOIUrl":null,"url":null,"abstract":"We study weakly trapped submanifolds of codimension two in a standard static spacetime. In this setting, we apply some generalized maximum principles in order to investigate the geometry of these trapped submanifolds. For instance, we establish sufficient conditions to guarantee that such a spacelike submanifold must be a hypersurface of the Riemannian base of the ambient spacetime. As a consequence, we prove that there do not exist n-dimensional compact (without boundary) trapped submanifolds immersed in an (n+2)-dimensional standard static spacetime. Such a nonexistence result was originally obtained for stationary spacetimes by Mars and Senovilla [20]. Furthermore, we also investigate parabolic weakly trapped submanifolds immersed in a standard static spacetime.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Weakly trapped submanifolds in standard static spacetimes\",\"authors\":\"A. Freitas, H. F. Lima, E. Lima, Márcio S. Santos\",\"doi\":\"10.4310/arkiv.2019.v57.n2.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study weakly trapped submanifolds of codimension two in a standard static spacetime. In this setting, we apply some generalized maximum principles in order to investigate the geometry of these trapped submanifolds. For instance, we establish sufficient conditions to guarantee that such a spacelike submanifold must be a hypersurface of the Riemannian base of the ambient spacetime. As a consequence, we prove that there do not exist n-dimensional compact (without boundary) trapped submanifolds immersed in an (n+2)-dimensional standard static spacetime. Such a nonexistence result was originally obtained for stationary spacetimes by Mars and Senovilla [20]. Furthermore, we also investigate parabolic weakly trapped submanifolds immersed in a standard static spacetime.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2019.v57.n2.a4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2019.v57.n2.a4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

研究了标准静态时空中余维二的弱俘获子流形。在这种情况下,我们应用一些广义的极大值原理来研究这些被困子流形的几何形状。例如,我们建立了足够的条件来保证这样的类空间子流形必须是环境时空的黎曼基底的超曲面。因此,我们证明了在(n+2)维标准静态时空中不存在n维紧致(无边界)捕获子流形。这样的不存在性结果最初是由火星和塞诺维拉在静止时空中得到的。此外,我们还研究了浸没在标准静态时空中的抛物型弱俘获子流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly trapped submanifolds in standard static spacetimes
We study weakly trapped submanifolds of codimension two in a standard static spacetime. In this setting, we apply some generalized maximum principles in order to investigate the geometry of these trapped submanifolds. For instance, we establish sufficient conditions to guarantee that such a spacelike submanifold must be a hypersurface of the Riemannian base of the ambient spacetime. As a consequence, we prove that there do not exist n-dimensional compact (without boundary) trapped submanifolds immersed in an (n+2)-dimensional standard static spacetime. Such a nonexistence result was originally obtained for stationary spacetimes by Mars and Senovilla [20]. Furthermore, we also investigate parabolic weakly trapped submanifolds immersed in a standard static spacetime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信