无限颜色的A.s.收敛Pólya与随机漫步相关的回合

IF 0.8 4区 数学 Q2 MATHEMATICS
S. Janson
{"title":"无限颜色的A.s.收敛Pólya与随机漫步相关的回合","authors":"S. Janson","doi":"10.4310/arkiv.2021.v59.n1.a4","DOIUrl":null,"url":null,"abstract":"We consider P\\'olya urns with infinitely many colours that are of a random walk type, in two related version. We show that the colour distribution a.s., after rescaling, converges to a normal distribution, assuming only second moments on the offset distribution. This improves results by Bandyopadhyay and Thacker (2014--2017; convergence in probability), and Mailler and Marckert (2017; a.s. convergence assuming exponential moment).","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A.s. convergence for infinite colour Pólya urns associated with random walks\",\"authors\":\"S. Janson\",\"doi\":\"10.4310/arkiv.2021.v59.n1.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider P\\\\'olya urns with infinitely many colours that are of a random walk type, in two related version. We show that the colour distribution a.s., after rescaling, converges to a normal distribution, assuming only second moments on the offset distribution. This improves results by Bandyopadhyay and Thacker (2014--2017; convergence in probability), and Mailler and Marckert (2017; a.s. convergence assuming exponential moment).\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2021.v59.n1.a4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2021.v59.n1.a4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

我们在两个相关的版本中考虑具有无限多种颜色的随机漫步类型的P\'olya回合。我们表明,在重新缩放后,颜色分布收敛到正态分布,只假设偏移分布上的第二矩。这改进了Bandyopadhyay和Thacker (2014- 2017;收敛概率),Mailler和markkert (2017;A.s.收敛假设指数矩)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A.s. convergence for infinite colour Pólya urns associated with random walks
We consider P\'olya urns with infinitely many colours that are of a random walk type, in two related version. We show that the colour distribution a.s., after rescaling, converges to a normal distribution, assuming only second moments on the offset distribution. This improves results by Bandyopadhyay and Thacker (2014--2017; convergence in probability), and Mailler and Marckert (2017; a.s. convergence assuming exponential moment).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信