多能理论与凸体:大偏差原理

IF 0.8 4区 数学 Q2 MATHEMATICS
T. Bayraktar, T. Bloom, N. Levenberg, C. H. Lu
{"title":"多能理论与凸体:大偏差原理","authors":"T. Bayraktar, T. Bloom, N. Levenberg, C. H. Lu","doi":"10.4310/arkiv.2019.v57.n2.a2","DOIUrl":null,"url":null,"abstract":"We continue the study in a previous work in the setting of weighted pluripotential theory arising from polynomials associated to a convex body $P$ in $({\\bf R}^+)^d$. Our goal is to establish a large deviation principle in this setting specifying the rate function in terms of $P-$pluripotential-theoretic notions. As an important preliminary step, we first give an existence proof for the solution of a Monge-Amp\\`ere equation in an appropriate finite energy class. This is achieved using a variational approach.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Pluripotential theory and convex bodies: large deviation principle\",\"authors\":\"T. Bayraktar, T. Bloom, N. Levenberg, C. H. Lu\",\"doi\":\"10.4310/arkiv.2019.v57.n2.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue the study in a previous work in the setting of weighted pluripotential theory arising from polynomials associated to a convex body $P$ in $({\\\\bf R}^+)^d$. Our goal is to establish a large deviation principle in this setting specifying the rate function in terms of $P-$pluripotential-theoretic notions. As an important preliminary step, we first give an existence proof for the solution of a Monge-Amp\\\\`ere equation in an appropriate finite energy class. This is achieved using a variational approach.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2019.v57.n2.a2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2019.v57.n2.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们在$({\bf R}^+)^d$中与凸体$P$相关的多项式所产生的加权多势理论的背景下继续前人的研究。我们的目标是在这种情况下建立一个大偏差原理,用P-多势理论概念来指定速率函数。作为一个重要的初步步骤,我们首先给出了Monge-Amp ' ere方程在适当有限能量类中的解的存在性证明。这是使用变分方法实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pluripotential theory and convex bodies: large deviation principle
We continue the study in a previous work in the setting of weighted pluripotential theory arising from polynomials associated to a convex body $P$ in $({\bf R}^+)^d$. Our goal is to establish a large deviation principle in this setting specifying the rate function in terms of $P-$pluripotential-theoretic notions. As an important preliminary step, we first give an existence proof for the solution of a Monge-Amp\`ere equation in an appropriate finite energy class. This is achieved using a variational approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信