Lelong数,monge - ampantere质量,和多重次谐波函数的Schwarz对称

IF 0.8 4区 数学 Q2 MATHEMATICS
Long Li
{"title":"Lelong数,monge - ampantere质量,和多重次谐波函数的Schwarz对称","authors":"Long Li","doi":"10.4310/arkiv.2020.v58.n2.a8","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to study the Lelong number, the integrability index and the Monge-Ampere mass at the origin of an $S^1$-invariant plurisubharmonic function on a balanced domain in $\\mathbb{C}^n$ under the Schwarz symmetrization. We prove that $n$ times the integrability index is exactly the Lelong number of the symmetrization, and if the function is further toric with a single pole at the origin, then the Monge-Ampere mass is always decreasing under the symmetrization","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Lelong number, the Monge–Ampère mass, and the Schwarz symmetrization of plurisubharmonic functions\",\"authors\":\"Long Li\",\"doi\":\"10.4310/arkiv.2020.v58.n2.a8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to study the Lelong number, the integrability index and the Monge-Ampere mass at the origin of an $S^1$-invariant plurisubharmonic function on a balanced domain in $\\\\mathbb{C}^n$ under the Schwarz symmetrization. We prove that $n$ times the integrability index is exactly the Lelong number of the symmetrization, and if the function is further toric with a single pole at the origin, then the Monge-Ampere mass is always decreasing under the symmetrization\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2020.v58.n2.a8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2020.v58.n2.a8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

在Schwarz对称下,研究了$\mathbb{C}^n$中平衡域上$S^1$不变多次谐波函数的Lelong数、可积性指标和原点处的Monge-Ampere质量。我们证明了$n$乘以可积性指标正是对称化的Lelong数,并且如果函数在原点处为单极进一步环面,则在对称化下蒙日-安培质量总是减小的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Lelong number, the Monge–Ampère mass, and the Schwarz symmetrization of plurisubharmonic functions
The aim of this paper is to study the Lelong number, the integrability index and the Monge-Ampere mass at the origin of an $S^1$-invariant plurisubharmonic function on a balanced domain in $\mathbb{C}^n$ under the Schwarz symmetrization. We prove that $n$ times the integrability index is exactly the Lelong number of the symmetrization, and if the function is further toric with a single pole at the origin, then the Monge-Ampere mass is always decreasing under the symmetrization
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信