{"title":"莫尔斯理论中水平集的拓扑变化","authors":"A. Knauf, N. Martynchuk","doi":"10.4310/arkiv.2020.v58.n2.a6","DOIUrl":null,"url":null,"abstract":"Classical Morse theory proceeds by considering sublevel sets $f^{-1}(-\\infty, a]$ of a Morse function $f: M \\to R$, where $M$ is a smooth finite-dimensional manifold. In this paper, we study the topology of the level sets $f^{-1}(a)$ and give conditions under which the topology of $f^{-1}(a)$ changes when passing a critical value. We show that for a general class of functions, which includes all exhaustive Morse function, the topology of a regular level $f^{-1}(a)$ always changes when passing a single critical point, unless the index of the critical point is half the dimension of the manifold $M$. When $f$ is a natural Hamiltonian on a cotangent bundle, we obtain more precise results in terms of the topology of the configuration space. (Counter-)examples and applications to celestial mechanics are also discussed.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Topology change of level sets in Morse theory\",\"authors\":\"A. Knauf, N. Martynchuk\",\"doi\":\"10.4310/arkiv.2020.v58.n2.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical Morse theory proceeds by considering sublevel sets $f^{-1}(-\\\\infty, a]$ of a Morse function $f: M \\\\to R$, where $M$ is a smooth finite-dimensional manifold. In this paper, we study the topology of the level sets $f^{-1}(a)$ and give conditions under which the topology of $f^{-1}(a)$ changes when passing a critical value. We show that for a general class of functions, which includes all exhaustive Morse function, the topology of a regular level $f^{-1}(a)$ always changes when passing a single critical point, unless the index of the critical point is half the dimension of the manifold $M$. When $f$ is a natural Hamiltonian on a cotangent bundle, we obtain more precise results in terms of the topology of the configuration space. (Counter-)examples and applications to celestial mechanics are also discussed.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2020.v58.n2.a6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2020.v58.n2.a6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
摘要
经典莫尔斯理论首先考虑莫尔斯函数$f: M \to R$的子水平集$f^{-1}(-\infty, a]$,其中$M$是光滑的有限维流形。本文研究了水平集$f^{-1}(a)$的拓扑结构,并给出了当通过一个临界值时$f^{-1}(a)$拓扑结构发生变化的条件。我们证明了对于包含所有穷举莫尔斯函数的一般函数类,正则能级$f^{-1}(a)$的拓扑结构在经过单个临界点时总是变化的,除非临界点的索引是流形的一半维数$M$。当$f$是余切束上的自然哈密顿量时,我们就构型空间的拓扑得到了更精确的结果。还讨论了反例及其在天体力学中的应用。
Classical Morse theory proceeds by considering sublevel sets $f^{-1}(-\infty, a]$ of a Morse function $f: M \to R$, where $M$ is a smooth finite-dimensional manifold. In this paper, we study the topology of the level sets $f^{-1}(a)$ and give conditions under which the topology of $f^{-1}(a)$ changes when passing a critical value. We show that for a general class of functions, which includes all exhaustive Morse function, the topology of a regular level $f^{-1}(a)$ always changes when passing a single critical point, unless the index of the critical point is half the dimension of the manifold $M$. When $f$ is a natural Hamiltonian on a cotangent bundle, we obtain more precise results in terms of the topology of the configuration space. (Counter-)examples and applications to celestial mechanics are also discussed.