具有无限Gelfand-Kirillov维数的包络代数

IF 0.8 4区 数学 Q2 MATHEMATICS
N. Iyudu, S. J. Sierra
{"title":"具有无限Gelfand-Kirillov维数的包络代数","authors":"N. Iyudu, S. J. Sierra","doi":"10.4310/arkiv.2020.v58.n2.a4","DOIUrl":null,"url":null,"abstract":"Let $\\mf g$ be the Witt algebra or the positive Witt algebra. It is well known that the enveloping algebra $U(\\mf g )$ has intermediate growth and thus infinite Gelfand-Kirillov (GK-) dimension. We prove that the GK-dimension of $U(\\mf g)$ is {\\em just infinite} in the sense that any proper quotient of $U(\\mf g)$ has polynomial growth. \nThis proves a conjecture of Petukhov and the second named author for the positive Witt algebra. \nWe also establish the corresponding results for quotients of the symmetric algebra $S(\\mf g)$ by proper Poisson ideals. \nIn fact, we prove more generally that any central quotient of the universal enveloping algebra of the Virasoro algebra has just infinite GK-dimension. We give several applications. In particular, we easily compute the annihilators of Verma modules over the Virasoro algebra.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Enveloping algebras with just infinite Gelfand–Kirillov dimension\",\"authors\":\"N. Iyudu, S. J. Sierra\",\"doi\":\"10.4310/arkiv.2020.v58.n2.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mf g$ be the Witt algebra or the positive Witt algebra. It is well known that the enveloping algebra $U(\\\\mf g )$ has intermediate growth and thus infinite Gelfand-Kirillov (GK-) dimension. We prove that the GK-dimension of $U(\\\\mf g)$ is {\\\\em just infinite} in the sense that any proper quotient of $U(\\\\mf g)$ has polynomial growth. \\nThis proves a conjecture of Petukhov and the second named author for the positive Witt algebra. \\nWe also establish the corresponding results for quotients of the symmetric algebra $S(\\\\mf g)$ by proper Poisson ideals. \\nIn fact, we prove more generally that any central quotient of the universal enveloping algebra of the Virasoro algebra has just infinite GK-dimension. We give several applications. In particular, we easily compute the annihilators of Verma modules over the Virasoro algebra.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2020.v58.n2.a4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2020.v58.n2.a4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

设$\mf g$为威特代数或正威特代数。众所周知,包络代数$U(\mf g)$具有中间增长,因此具有无限的Gelfand-Kirillov (GK-)维数。我们证明了$U(\mf g)$的gk维是{\em刚好无穷},即$U(\mf g)$的任何真商都具有多项式增长。这证明了佩图霍夫和第二作者关于正威特代数的一个猜想。并利用适当泊松理想建立了对称代数$S(\mf g)$商的相应结果。实际上,我们更一般地证明了Virasoro代数的普遍包络代数的任何中心商都具有无限的gk维数。我们给出了几个应用。特别地,我们很容易地计算出Virasoro代数上的Verma模的湮灭子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enveloping algebras with just infinite Gelfand–Kirillov dimension
Let $\mf g$ be the Witt algebra or the positive Witt algebra. It is well known that the enveloping algebra $U(\mf g )$ has intermediate growth and thus infinite Gelfand-Kirillov (GK-) dimension. We prove that the GK-dimension of $U(\mf g)$ is {\em just infinite} in the sense that any proper quotient of $U(\mf g)$ has polynomial growth. This proves a conjecture of Petukhov and the second named author for the positive Witt algebra. We also establish the corresponding results for quotients of the symmetric algebra $S(\mf g)$ by proper Poisson ideals. In fact, we prove more generally that any central quotient of the universal enveloping algebra of the Virasoro algebra has just infinite GK-dimension. We give several applications. In particular, we easily compute the annihilators of Verma modules over the Virasoro algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信