关于拉普拉斯-卡尔森嵌入,以及傅里叶变换的L^p -映射性质

IF 0.8 4区 数学 Q2 MATHEMATICS
E. Rydhe
{"title":"关于拉普拉斯-卡尔森嵌入,以及傅里叶变换的L^p -映射性质","authors":"E. Rydhe","doi":"10.4310/arkiv.2020.v58.n2.a10","DOIUrl":null,"url":null,"abstract":"We investigate so-called Laplace--Carleson embeddings for large exponents. In particular, we extend some results by Jacob, Partington, and Pott. We also discuss some related results for Sobolev- and Besov spaces, and mapping properties of the Fourier transform. These variants of the Hausdorff--Young theorem appear difficult to find in the literature. We conclude the paper with an example related to an open problem.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On Laplace–Carleson embeddings, and $L^p$-mapping properties of the Fourier transform\",\"authors\":\"E. Rydhe\",\"doi\":\"10.4310/arkiv.2020.v58.n2.a10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate so-called Laplace--Carleson embeddings for large exponents. In particular, we extend some results by Jacob, Partington, and Pott. We also discuss some related results for Sobolev- and Besov spaces, and mapping properties of the Fourier transform. These variants of the Hausdorff--Young theorem appear difficult to find in the literature. We conclude the paper with an example related to an open problem.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2020.v58.n2.a10\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2020.v58.n2.a10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

我们研究所谓的大指数拉普拉斯-卡尔森嵌入。特别地,我们扩展了Jacob, Partington和Pott的一些结果。我们还讨论了Sobolev-和Besov空间的一些相关结果,以及傅里叶变换的映射性质。Hausdorff- Young定理的这些变体似乎很难在文献中找到。我们用一个与开放问题有关的例子来结束本文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Laplace–Carleson embeddings, and $L^p$-mapping properties of the Fourier transform
We investigate so-called Laplace--Carleson embeddings for large exponents. In particular, we extend some results by Jacob, Partington, and Pott. We also discuss some related results for Sobolev- and Besov spaces, and mapping properties of the Fourier transform. These variants of the Hausdorff--Young theorem appear difficult to find in the literature. We conclude the paper with an example related to an open problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信