{"title":"关于非重叠Haar多项式系统","authors":"G. Karagulyan","doi":"10.4310/arkiv.2020.v58.n1.a8","DOIUrl":null,"url":null,"abstract":"We prove that $\\log n$ is an almost everywhere convergence Weyl multiplier for the orthonormal systems of non-overlapping Haar polynomials. Moreover, it is done for the general systems of martingale difference polynomials.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On systems of non-overlapping Haar polynomials\",\"authors\":\"G. Karagulyan\",\"doi\":\"10.4310/arkiv.2020.v58.n1.a8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that $\\\\log n$ is an almost everywhere convergence Weyl multiplier for the orthonormal systems of non-overlapping Haar polynomials. Moreover, it is done for the general systems of martingale difference polynomials.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2020.v58.n1.a8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2020.v58.n1.a8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We prove that $\log n$ is an almost everywhere convergence Weyl multiplier for the orthonormal systems of non-overlapping Haar polynomials. Moreover, it is done for the general systems of martingale difference polynomials.