非模超图的覆盖理想的深度函数的行为

IF 0.8 4区 数学 Q2 MATHEMATICS
Nguyen Thu Hang, T. N. Trung
{"title":"非模超图的覆盖理想的深度函数的行为","authors":"Nguyen Thu Hang, T. N. Trung","doi":"10.4310/ARKIV.2017.V55.N1.A4","DOIUrl":null,"url":null,"abstract":"We prove that the cover ideals of all unimodular hypergraphs have the nonincreasing depth function property. Furthermore, we show that the index of depth stability of these ideals is bounded by the number of variables. Introduction Let R=k[x1, ..., xn] be a polynomial ring over a given field k, and let I be a homogeneous ideal in R. It is known by Brodmann [3] that depth(R/I) takes a constant value for large s. Moreover, lim s→∞ depthR/I dimR− (I), where (I) is the analytic spread of I. The index of depth stability of I is defined by dstab(I) :=min { s0 1 |depthS/I =depthS/I0 for all s s0 } . Two natural questions arise from Brodmann’s theorem: (1) What is the nature of the function s →depthR/Is for s dstab(I)? (2) What is a reasonable bound for dstab(I)? On the nature of the function s →depthR/Is for s 1, which is called the depth function of I, Herzog and Hibi [10] conjectured that the depth function of ideals can be any convergent nonnegative integer valued function. The answer is affirmative for bounded increasing functions (see [10]) and non-increasing functions (see [8]). The behavior of depth functions, even for monomial ideals, is complicated (see e.g. [1]). Squarefree monomial ideals behave considerably better than monomial","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"55 1","pages":"89-104"},"PeriodicalIF":0.8000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"The behavior of depth functions of cover ideals of unimodular hypergraphs\",\"authors\":\"Nguyen Thu Hang, T. N. Trung\",\"doi\":\"10.4310/ARKIV.2017.V55.N1.A4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the cover ideals of all unimodular hypergraphs have the nonincreasing depth function property. Furthermore, we show that the index of depth stability of these ideals is bounded by the number of variables. Introduction Let R=k[x1, ..., xn] be a polynomial ring over a given field k, and let I be a homogeneous ideal in R. It is known by Brodmann [3] that depth(R/I) takes a constant value for large s. Moreover, lim s→∞ depthR/I dimR− (I), where (I) is the analytic spread of I. The index of depth stability of I is defined by dstab(I) :=min { s0 1 |depthS/I =depthS/I0 for all s s0 } . Two natural questions arise from Brodmann’s theorem: (1) What is the nature of the function s →depthR/Is for s dstab(I)? (2) What is a reasonable bound for dstab(I)? On the nature of the function s →depthR/Is for s 1, which is called the depth function of I, Herzog and Hibi [10] conjectured that the depth function of ideals can be any convergent nonnegative integer valued function. The answer is affirmative for bounded increasing functions (see [10]) and non-increasing functions (see [8]). The behavior of depth functions, even for monomial ideals, is complicated (see e.g. [1]). Squarefree monomial ideals behave considerably better than monomial\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":\"55 1\",\"pages\":\"89-104\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ARKIV.2017.V55.N1.A4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ARKIV.2017.V55.N1.A4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

证明了所有非模超图的覆盖理想都具有深度函数不增加的性质。进一步,我们证明了这些理想的深度稳定性指标是由变量的数目有界的。设R=k[x1,…], xn]是给定域k上的多项式环,设I是R中的齐次理想。根据Brodmann[3],深度(R/I)对于大的s取恒定值。并且,lim s→∞depthR/I dimR - (I),其中(I)是I的解析展开。I的深度稳定性指标定义为dstab(I):=min {s1 |depth /I =depth /I0对于所有的s s0}。从Brodmann定理中自然产生了两个问题:(1)s→depthR/ is对于s dstab(I)的性质是什么?(2) dstab(I)的合理边界是什么?针对s 1的深度函数s→depthR/Is的性质,Herzog和Hibi[10]推测理想的深度函数可以是任意收敛的非负整数值函数。对于有界递增函数(见[10])和非递增函数(见[8]),答案是肯定的。深度函数的行为,即使对于单项式理想,也是复杂的(例如[1])。无平方单项理想比单项理想表现得好得多
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The behavior of depth functions of cover ideals of unimodular hypergraphs
We prove that the cover ideals of all unimodular hypergraphs have the nonincreasing depth function property. Furthermore, we show that the index of depth stability of these ideals is bounded by the number of variables. Introduction Let R=k[x1, ..., xn] be a polynomial ring over a given field k, and let I be a homogeneous ideal in R. It is known by Brodmann [3] that depth(R/I) takes a constant value for large s. Moreover, lim s→∞ depthR/I dimR− (I), where (I) is the analytic spread of I. The index of depth stability of I is defined by dstab(I) :=min { s0 1 |depthS/I =depthS/I0 for all s s0 } . Two natural questions arise from Brodmann’s theorem: (1) What is the nature of the function s →depthR/Is for s dstab(I)? (2) What is a reasonable bound for dstab(I)? On the nature of the function s →depthR/Is for s 1, which is called the depth function of I, Herzog and Hibi [10] conjectured that the depth function of ideals can be any convergent nonnegative integer valued function. The answer is affirmative for bounded increasing functions (see [10]) and non-increasing functions (see [8]). The behavior of depth functions, even for monomial ideals, is complicated (see e.g. [1]). Squarefree monomial ideals behave considerably better than monomial
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信