系数无界幂级数值的代数独立性

IF 0.8 4区 数学 Q2 MATHEMATICS
Kaneko Hajime
{"title":"系数无界幂级数值的代数独立性","authors":"Kaneko Hajime","doi":"10.4310/ARKIV.2017.V55.N1.A3","DOIUrl":null,"url":null,"abstract":"Many mathematicians have studied the algebraic independence over Q of the values of gap series, and the values of lacunary series satisfying functional equations of Mahler type. In this paper, we give a new criterion for the algebraic independence over Q of the values ∑∞ n=0 t(n)β −n for distinct sequences (t(n))n=0 of nonnegative integers, where β is a fixed Pisot or Salem number. Our criterion is applicable to certain power series which are not lacunary. Moreover, our criterion does not use functional equations. Consequently, we deduce the algebraic independence of certain values ∑∞ n=0 t1(n)β −n, . . . , ∑∞ n=0 tr(n)β −n satisfying lim n→∞,ti−1(n) ̸=0 ti(n) ti−1(n) = ∞ (i = 2, . . . , r) for any positive real number M . 1 The transcendence of the values of power series with bounded coefficients We introduce notation which we use throughout this paper. Let N (resp. Z) be the set of nonnegative integers (resp. positive integers). For a real number x, we denote the integral and fractional parts of x by ⌊x⌋ and {x}, respectively. We use the Landau symbols o,O, and the Vinogradov symbols ≫,≪ with their regular meanings. For a sequence of integers t = (tn) ∞ n=0, put S(t) := {n ∈ N | tn ̸= 0}. and","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"55 1","pages":"61-87"},"PeriodicalIF":0.8000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Algebraic independence of the values of power series with unbounded coefficients\",\"authors\":\"Kaneko Hajime\",\"doi\":\"10.4310/ARKIV.2017.V55.N1.A3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many mathematicians have studied the algebraic independence over Q of the values of gap series, and the values of lacunary series satisfying functional equations of Mahler type. In this paper, we give a new criterion for the algebraic independence over Q of the values ∑∞ n=0 t(n)β −n for distinct sequences (t(n))n=0 of nonnegative integers, where β is a fixed Pisot or Salem number. Our criterion is applicable to certain power series which are not lacunary. Moreover, our criterion does not use functional equations. Consequently, we deduce the algebraic independence of certain values ∑∞ n=0 t1(n)β −n, . . . , ∑∞ n=0 tr(n)β −n satisfying lim n→∞,ti−1(n) ̸=0 ti(n) ti−1(n) = ∞ (i = 2, . . . , r) for any positive real number M . 1 The transcendence of the values of power series with bounded coefficients We introduce notation which we use throughout this paper. Let N (resp. Z) be the set of nonnegative integers (resp. positive integers). For a real number x, we denote the integral and fractional parts of x by ⌊x⌋ and {x}, respectively. We use the Landau symbols o,O, and the Vinogradov symbols ≫,≪ with their regular meanings. For a sequence of integers t = (tn) ∞ n=0, put S(t) := {n ∈ N | tn ̸= 0}. and\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":\"55 1\",\"pages\":\"61-87\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ARKIV.2017.V55.N1.A3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ARKIV.2017.V55.N1.A3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

许多数学家研究了间隙级数的值在Q上的代数独立性,以及满足Mahler型泛函方程的空白级数的值。本文给出了非负整数(t(n))n=0的异数列(t(n))n的值∑∞n=0 t(n)β - n在Q上的代数独立性的一个新判据,其中β是固定的Pisot数或Salem数。我们的判据适用于某些幂级数。此外,我们的准则不使用函数方程。因此,我们推导出某些值∑∞n=0 t1(n)β−n,…的代数独立性。,∑∞n = 0 tr (n)β−n满足lim n→∞,ti−1 (n)̸= 0 ti (n) ti−1 (n) =∞(i = 2。, r)对于任意正实数M。系数有界幂级数值的超越。我们介绍了在本文中使用的符号。设N (p。Z)为非负整数的集合(p。正整数)。对于实数x,我们分别用⌊x⌋和{x}表示x的整数部分和小数部分。我们使用朗道符号o、o和维诺格拉多夫符号≠,它们都有各自的常规含义。对于整数序列t = (tn)∞n=0,设S(t):= {n∈n | tn n=0}。和
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic independence of the values of power series with unbounded coefficients
Many mathematicians have studied the algebraic independence over Q of the values of gap series, and the values of lacunary series satisfying functional equations of Mahler type. In this paper, we give a new criterion for the algebraic independence over Q of the values ∑∞ n=0 t(n)β −n for distinct sequences (t(n))n=0 of nonnegative integers, where β is a fixed Pisot or Salem number. Our criterion is applicable to certain power series which are not lacunary. Moreover, our criterion does not use functional equations. Consequently, we deduce the algebraic independence of certain values ∑∞ n=0 t1(n)β −n, . . . , ∑∞ n=0 tr(n)β −n satisfying lim n→∞,ti−1(n) ̸=0 ti(n) ti−1(n) = ∞ (i = 2, . . . , r) for any positive real number M . 1 The transcendence of the values of power series with bounded coefficients We introduce notation which we use throughout this paper. Let N (resp. Z) be the set of nonnegative integers (resp. positive integers). For a real number x, we denote the integral and fractional parts of x by ⌊x⌋ and {x}, respectively. We use the Landau symbols o,O, and the Vinogradov symbols ≫,≪ with their regular meanings. For a sequence of integers t = (tn) ∞ n=0, put S(t) := {n ∈ N | tn ̸= 0}. and
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信